Abstract:Face anti-spoofing (FAS) heavily relies on identifying live/spoof discriminative features to counter face presentation attacks. Recently, we proposed LDCformer to successfully incorporate the Learnable Descriptive Convolution (LDC) into ViT, to model long-range dependency of locally descriptive features for FAS. In this paper, we propose three novel training strategies to effectively enhance the training of LDCformer to largely boost its feature characterization capability. The first strategy, dual-attention supervision, is developed to learn fine-grained liveness features guided by regional live/spoof attentions. The second strategy, self-challenging supervision, is designed to enhance the discriminability of the features by generating challenging training data. In addition, we propose a third training strategy, transitional triplet mining strategy, through narrowing the cross-domain gap while maintaining the transitional relationship between live and spoof features, to enlarge the domain-generalization capability of LDCformer. Extensive experiments show that LDCformer under joint supervision of the three novel training strategies outperforms previous methods.
Abstract:Face anti-spoofing (FAS) techniques aim to enhance the security of facial identity authentication by distinguishing authentic live faces from deceptive attempts. While two-class FAS methods risk overfitting to training attacks to achieve better performance, one-class FAS approaches handle unseen attacks well but are less robust to domain information entangled within the liveness features. To address this, we propose an Unsupervised Feature Disentanglement and Augmentation Network (\textbf{UFDANet}), a one-class FAS technique that enhances generalizability by augmenting face images via disentangled features. The \textbf{UFDANet} employs a novel unsupervised feature disentangling method to separate the liveness and domain features, facilitating discriminative feature learning. It integrates an out-of-distribution liveness feature augmentation scheme to synthesize new liveness features of unseen spoof classes, which deviate from the live class, thus enhancing the representability and discriminability of liveness features. Additionally, \textbf{UFDANet} incorporates a domain feature augmentation routine to synthesize unseen domain features, thereby achieving better generalizability. Extensive experiments demonstrate that the proposed \textbf{UFDANet} outperforms previous one-class FAS methods and achieves comparable performance to state-of-the-art two-class FAS methods.