Abstract:Business process automation is a booming multi-billion-dollar industry that promises to remove menial tasks from workers' plates -- through the introduction of autonomous agents -- and free up their time and brain power for more creative and engaging tasks. However, an essential component to the successful deployment of such autonomous agents is the ability of business users to monitor their performance and customize their execution. A simple and user-friendly interface with a low learning curve is necessary to increase the adoption of such agents in banking, insurance, retail and other domains. As a result, proactive chatbots will play a crucial role in the business automation space. Not only can they respond to users' queries and perform actions on their behalf but also initiate communication with the users to inform them of the system's behavior. This will provide business users a natural language interface to interact with, monitor and control autonomous agents. In this work, we present a multi-agent orchestration framework to develop such proactive chatbots by discussing the types of skills that can be composed into agents and how to orchestrate these agents. Two use cases on a travel preapproval business process and a loan application business process are adopted to qualitatively analyze the proposed framework based on four criteria: performance, coding overhead, scalability, and agent overlap.