Abstract:We propose a new framework for extracting visual information about a scene only using audio signals. Audio-based methods can overcome some of the limitations of vision-based methods i.e., they do not require "line-of-sight", are robust to occlusions and changes in illumination, and can function as a backup in case vision/lidar sensors fail. Therefore, audio-based methods can be useful even for applications in which only visual information is of interest Our framework is based on Manifold Learning and consists of two steps. First, we train a Vector-Quantized Variational Auto-Encoder to learn the data manifold of the particular visual modality we are interested in. Second, we train an Audio Transformation network to map multi-channel audio signals to the latent representation of the corresponding visual sample. We show that our method is able to produce meaningful images from audio using a publicly available audio/visual dataset. In particular, we consider the prediction of the following visual modalities from audio: depth and semantic segmentation. We hope the findings of our work can facilitate further research in visual information extraction from audio. Code is available at: https://github.com/ubc-vision/audio_manifold.
Abstract:There are many applications scenarios for which the computational performance and memory footprint of the prediction phase of Deep Neural Networks (DNNs) needs to be optimized. Binary Neural Networks (BDNNs) have been shown to be an effective way of achieving this objective. In this paper, we show how Convolutional Neural Networks (CNNs) can be implemented using binary representations. Espresso is a compact, yet powerful library written in C/CUDA that features all the functionalities required for the forward propagation of CNNs, in a binary file less than 400KB, without any external dependencies. Although it is mainly designed to take advantage of massive GPU parallelism, Espresso also provides an equivalent CPU implementation for CNNs. Espresso provides special convolutional and dense layers for BCNNs, leveraging bit-packing and bit-wise computations for efficient execution. These techniques provide a speed-up of matrix-multiplication routines, and at the same time, reduce memory usage when storing parameters and activations. We experimentally show that Espresso is significantly faster than existing implementations of optimized binary neural networks ($\approx$ 2 orders of magnitude). Espresso is released under the Apache 2.0 license and is available at http://github.com/fpeder/espresso.