Abstract:DECICE is a Horizon Europe project that is developing an AI-enabled open and portable management framework for automatic and adaptive optimization and deployment of applications in computing continuum encompassing from IoT sensors on the Edge to large-scale Cloud / HPC computing infrastructures. In this paper, we describe the DECICE framework and architecture. Furthermore, we highlight use-cases for framework evaluation: intelligent traffic intersection, magnetic resonance imaging, and emergency response.
Abstract:Artificial Intelligence (AI) and Deep Learning (DL) algorithms are currently applied to a wide range of products and solutions. DL training jobs are highly resource demanding and they experience great benefits when exploiting AI accelerators (e.g., GPUs). However, the effective management of GPU-powered clusters comes with great challenges. Among these, efficient scheduling and resource allocation solutions are crucial to maximize performance and minimize Data Centers operational costs. In this paper we propose ANDREAS, an advanced scheduling solution that tackles these problems jointly, aiming at optimizing DL training runtime workloads and their energy consumption in accelerated clusters. Experiments based on simulation demostrate that we can achieve a cost reduction between 30 and 62% on average with respect to first-principle methods while the validation on a real cluster shows a worst case deviation below 13% between actual and predicted costs, proving the effectiveness of ANDREAS solution in practical scenarios.