Abstract:This paper introduces Fast Calibrated Explanations, a method designed for generating rapid, uncertainty-aware explanations for machine learning models. By incorporating perturbation techniques from ConformaSight - a global explanation framework - into the core elements of Calibrated Explanations (CE), we achieve significant speedups. These core elements include local feature importance with calibrated predictions, both of which retain uncertainty quantification. While the new method sacrifices a small degree of detail, it excels in computational efficiency, making it ideal for high-stakes, real-time applications. Fast Calibrated Explanations are applicable to probabilistic explanations in classification and thresholded regression tasks, where they provide the likelihood of a target being above or below a user-defined threshold. This approach maintains the versatility of CE for both classification and probabilistic regression, making it suitable for a range of predictive tasks where uncertainty quantification is crucial.
Abstract:This paper introduces KwicKwocKwac 1.0 (KwicKK), a web application designed to enhance the annotation and enrichment of digital texts in the humanities. KwicKK provides a user-friendly interface that enables scholars and researchers to perform semi-automatic markup of textual documents, facilitating the identification of relevant entities such as people, organizations, and locations. Key functionalities include the visualization of annotated texts using KeyWord in Context (KWIC), KeyWord Out Of Context (KWOC), and KeyWord After Context (KWAC) methodologies, alongside automatic disambiguation of generic references and integration with Wikidata for Linked Open Data connections. The application supports metadata input and offers multiple download formats, promoting accessibility and ease of use. Developed primarily for the National Edition of Aldo Moro's works, KwicKK aims to lower the technical barriers for users while fostering deeper engagement with digital scholarly resources. The architecture leverages contemporary web technologies, ensuring scalability and reliability. Future developments will explore user experience enhancements, collaborative features, and integration of additional data sources.
Abstract:This study discusses the interplay between metrics used to measure the explainability of the AI systems and the proposed EU Artificial Intelligence Act. A standardisation process is ongoing: several entities (e.g. ISO) and scholars are discussing how to design systems that are compliant with the forthcoming Act and explainability metrics play a significant role. This study identifies the requirements that such a metric should possess to ease compliance with the AI Act. It does so according to an interdisciplinary approach, i.e. by departing from the philosophical concept of explainability and discussing some metrics proposed by scholars and standardisation entities through the lenses of the explainability obligations set by the proposed AI Act. Our analysis proposes that metrics to measure the kind of explainability endorsed by the proposed AI Act shall be risk-focused, model-agnostic, goal-aware, intelligible & accessible. This is why we discuss the extent to which these requirements are met by the metrics currently under discussion.
Abstract:We propose a new method for generating explanations with Artificial Intelligence (AI) and a tool to test its expressive power within a user interface. In order to bridge the gap between philosophy and human-computer interfaces, we show a new approach for the generation of interactive explanations based on a sophisticated pipeline of AI algorithms for structuring natural language documents into knowledge graphs, answering questions effectively and satisfactorily. With this work we aim to prove that the philosophical theory of explanations presented by Achinstein can be actually adapted for being implemented into a concrete software application, as an interactive and illocutionary process of answering questions. Specifically, our contribution is an approach to frame illocution in a computer-friendly way, to achieve user-centrality with statistical question answering. In fact, we frame illocution, in an explanatory process, as that mechanism responsible for anticipating the needs of the explainee in the form of unposed, implicit, archetypal questions, hence improving the user-centrality of the underlying explanatory process. More precisely, we hypothesise that given an arbitrary explanatory process, increasing its goal-orientedness and degree of illocution results in the generation of more usable (as per ISO 9241-210) explanations. We tested our hypotheses with a user-study involving more than 60 participants, on two XAI-based systems, one for credit approval (finance) and one for heart disease prediction (healthcare). The results showed that our proposed solution produced a statistically significant improvement (hence with a p-value lower than 0.05) on effectiveness. This, combined with a visible alignment between the increments in effectiveness and satisfaction, suggests that our understanding of illocution can be correct, giving evidence in favour of our theory.
Abstract:The European Union (EU) through the High-Level Expert Group on Artificial Intelligence (AI-HLEG) and the General Data Protection Regulation (GDPR) has recently posed an interesting challenge to the eXplainable AI (XAI) community, by demanding a more user-centred approach to explain Automated Decision-Making systems (ADMs). Looking at the relevant literature, XAI is currently focused on producing explainable software and explanations that generally follow an approach we could term One-Size-Fits-All, that is unable to meet a requirement of centring on user needs. One of the causes of this limit is the belief that making things explainable alone is enough to have pragmatic explanations. Thus, insisting on a clear separation between explainabilty (something that can be explained) and explanations, we point to explanatorY AI (YAI) as an alternative and more powerful approach to win the AI-HLEG challenge. YAI builds over XAI with the goal to collect and organize explainable information, articulating it into something we called user-centred explanatory discourses. Through the use of explanatory discourses/narratives we represent the problem of generating explanations for Automated Decision-Making systems (ADMs) into the identification of an appropriate path over an explanatory space, allowing explainees to interactively explore it and produce the explanation best suited to their needs.
Abstract:Numerous government initiatives (e.g. the EU with GDPR) are coming to the conclusion that the increasing complexity of modern software systems must be contrasted with some Rights to Explanation and metrics for the Impact Assessment of these tools, that allow humans to understand and oversee the output of Automated Decision Making systems. Explainable AI was born as a pathway to allow humans to explore and understand the inner working of complex systems. But establishing what is an explanation and objectively evaluating explainability, are not trivial tasks. With this paper, we present a new model-agnostic metric to measure the Degree of eXplainability of correct information in an objective way, exploiting a specific model from Ordinary Language Philosophy called the Achinstein's Theory of Explanations. In order to understand whether this metric is actually behaving as explainability is expected to, we designed a few experiments and a user-study on two realistic AI-based systems for healthcare and finance, involving famous AI technology including Artificial Neural Networks and TreeSHAP. The results we obtained are very encouraging, suggesting that our proposed metric for measuring the Degree of eXplainability is robust on several scenarios and it can be eventually exploited for a lawful Impact Assessment of an Automated Decision Making system.
Abstract:We propose a new method for explanations in Artificial Intelligence (AI) and a tool to test its expressive power within a user interface. In order to bridge the gap between philosophy and human-computer interfaces, we show a new approach for the generation of interactive explanations based on a sophisticated pipeline of AI algorithms for structuring natural language documents into knowledge graphs, answering questions effectively and satisfactorily. Among the mainstream philosophical theories of explanation we identified one that in our view is more easily applicable as a practical model for user-centric tools: Achinstein's Theory of Explanation. With this work we aim to prove that the theory proposed by Achinstein can be actually adapted for being implemented into a concrete software application, as an interactive process answering questions. To this end we found a way to handle the generic (archetypal) questions that implicitly characterise an explanatory processes as preliminary overviews rather than as answers to explicit questions, as commonly understood. To show the expressive power of this approach we designed and implemented a pipeline of AI algorithms for the generation of interactive explanations under the form of overviews, focusing on this aspect of explanations rather than on existing interfaces and presentation logic layers for question answering. We tested our hypothesis on a well-known XAI-powered credit approval system by IBM, comparing CEM, a static explanatory tool for post-hoc explanations, with an extension we developed adding interactive explanations based on our model. The results of the user study, involving more than 100 participants, showed that our proposed solution produced a statistically relevant improvement on effectiveness (U=931.0, p=0.036) over the baseline, thus giving evidence in favour of our theory.
Abstract:The main goal of this research is to produce a useful software for United Nations (UN), that could help to speed up the process of qualifying the UN documents following the Sustainable Development Goals (SDGs) in order to monitor the progresses at the world level to fight poverty, discrimination, climate changes. In fact human labeling of UN documents would be a daunting task given the size of the impacted corpus. Thus, automatic labeling must be adopted at least as a first step of a multi-phase process to reduce the overall effort of cataloguing and classifying. Deep Learning (DL) is nowadays one of the most powerful tools for state-of-the-art (SOTA) AI for this task, but very often it comes with the cost of an expensive and error-prone preparation of a training-set. In the case of multi-label text classification of domain-specific text it seems that we cannot effectively adopt DL without a big-enough domain-specific training-set. In this paper, we show that this is not always true. In fact we propose a novel method that is able, through statistics like TF-IDF, to exploit pre-trained SOTA DL models (such as the Universal Sentence Encoder) without any need for traditional transfer learning or any other expensive training procedure. We show the effectiveness of our method in a legal context, by classifying UN Resolutions according to their most related SDGs.