Abstract:This paper introduces Fast Calibrated Explanations, a method designed for generating rapid, uncertainty-aware explanations for machine learning models. By incorporating perturbation techniques from ConformaSight - a global explanation framework - into the core elements of Calibrated Explanations (CE), we achieve significant speedups. These core elements include local feature importance with calibrated predictions, both of which retain uncertainty quantification. While the new method sacrifices a small degree of detail, it excels in computational efficiency, making it ideal for high-stakes, real-time applications. Fast Calibrated Explanations are applicable to probabilistic explanations in classification and thresholded regression tasks, where they provide the likelihood of a target being above or below a user-defined threshold. This approach maintains the versatility of CE for both classification and probabilistic regression, making it suitable for a range of predictive tasks where uncertainty quantification is crucial.
Abstract:This paper addresses a significant gap in explainable AI: the necessity of interpreting epistemic uncertainty in model explanations. Although current methods mainly focus on explaining predictions, with some including uncertainty, they fail to provide guidance on how to reduce the inherent uncertainty in these predictions. To overcome this challenge, we introduce new types of explanations that specifically target epistemic uncertainty. These include ensured explanations, which highlight feature modifications that can reduce uncertainty, and categorisation of uncertain explanations counter-potential, semi-potential, and super-potential which explore alternative scenarios. Our work emphasises that epistemic uncertainty adds a crucial dimension to explanation quality, demanding evaluation based not only on prediction probability but also on uncertainty reduction. We introduce a new metric, ensured ranking, designed to help users identify the most reliable explanations by balancing trade-offs between uncertainty, probability, and competing alternative explanations. Furthermore, we extend the Calibrated Explanations method, incorporating tools that visualise how changes in feature values impact epistemic uncertainty. This enhancement provides deeper insights into model behaviour, promoting increased interpretability and appropriate trust in scenarios involving uncertain predictions.
Abstract:Artificial Intelligence (AI) is often an integral part of modern decision support systems (DSSs). The best-performing predictive models used in AI-based DSSs lack transparency. Explainable Artificial Intelligence (XAI) aims to create AI systems that can explain their rationale to human users. Local explanations in XAI can provide information about the causes of individual predictions in terms of feature importance. However, a critical drawback of existing local explanation methods is their inability to quantify the uncertainty associated with a feature's importance. This paper introduces an extension of a feature importance explanation method, Calibrated Explanations (CE), previously only supporting classification, with support for standard regression and probabilistic regression, i.e., the probability that the target is above an arbitrary threshold. The extension for regression keeps all the benefits of CE, such as calibration of the prediction from the underlying model with confidence intervals, uncertainty quantification of feature importance, and allows both factual and counterfactual explanations. CE for standard regression provides fast, reliable, stable, and robust explanations. CE for probabilistic regression provides an entirely new way of creating probabilistic explanations from any ordinary regression model and with a dynamic selection of thresholds. The performance of CE for probabilistic regression regarding stability and speed is comparable to LIME. The method is model agnostic with easily understood conditional rules. An implementation in Python is freely available on GitHub and for installation using pip making the results in this paper easily replicable.
Abstract:When using machine learning for fault detection, a common problem is the fact that most data sets are very unbalanced, with the minority class (a fault) being the interesting one. In this paper, we investigate the usage of Venn-Abers predictors, looking specifically at the effect on the minority class predictions. A key property of Venn-Abers predictors is that they output well-calibrated probability intervals. In the experiments, we apply Venn-Abers calibration to decision trees, random forests and XGBoost models, showing how both overconfident and underconfident models are corrected. In addition, the benefit of using the valid probability intervals produced by Venn-Abers for decision support is demonstrated. When using techniques producing opaque underlying models, e.g., random forest and XGBoost, each prediction will consist of not only the label, but also a valid probability interval, where the width is an indication of the confidence in the estimate. Adding Venn-Abers on top of a decision tree allows inspection and analysis of the model, to understand both the underlying relationship, and finding out in which parts of feature space that the model is accurate and/or confident.