Abstract:In an attempt to mimic the complex paths through which unreliable content spreads between search engines and social media, we explore the impact of incorporating both webgraph and large-scale social media contexts into website credibility classification and discovery systems. We further explore the usage of what we define as \textit{dredge words} on social media -- terms or phrases for which unreliable domains rank highly. Through comprehensive graph neural network ablations, we demonstrate that curriculum-based heterogeneous graph models that leverage context from both webgraphs and social media data outperform homogeneous and single-mode approaches. We further demonstrate that the incorporation of dredge words into our model strongly associates unreliable websites with social media and online commerce platforms. Finally, we show our heterogeneous model greatly outperforms competing systems in the top-k identification of unlabeled unreliable websites. We demonstrate the strong unreliability signals present in the diverse paths that users follow to uncover unreliable content, and we release a novel dataset of dredge words.
Abstract:We evaluate the zero-shot ability of GPT-4 and LLaVa to perform simple Visual Network Analysis (VNA) tasks on small-scale graphs. We evaluate the Vision Language Models (VLMs) on 5 tasks related to three foundational network science concepts: identifying nodes of maximal degree on a rendered graph, identifying whether signed triads are balanced or unbalanced, and counting components. The tasks are structured to be easy for a human who understands the underlying graph theoretic concepts, and can all be solved by counting the appropriate elements in graphs. We find that while GPT-4 consistently outperforms LLaVa, both models struggle with every visual network analysis task we propose. We publicly release the first benchmark for the evaluation of VLMs on foundational VNA tasks.
Abstract:The proliferation of unreliable news domains on the internet has had wide-reaching negative impacts on society. We introduce and evaluate interventions aimed at reducing traffic to unreliable news domains from search engines while maintaining traffic to reliable domains. We build these interventions on the principles of fairness (penalize sites for what is in their control), generality (label/fact-check agnostic), targeted (increase the cost of adversarial behavior), and scalability (works at webscale). We refine our methods on small-scale webdata as a testbed and then generalize the interventions to a large-scale webgraph containing 93.9M domains and 1.6B edges. We demonstrate that our methods penalize unreliable domains far more than reliable domains in both settings and we explore multiple avenues to mitigate unintended effects on both the small-scale and large-scale webgraph experiments. These results indicate the potential of our approach to reduce the spread of misinformation and foster a more reliable online information ecosystem. This research contributes to the development of targeted strategies to enhance the trustworthiness and quality of search engine results, ultimately benefiting users and the broader digital community.