Abstract:Scientific user facilities, such as synchrotron beamlines, are equipped with a wide array of hardware and software tools that require a codebase for human-computer-interaction. This often necessitates developers to be involved to establish connection between users/researchers and the complex instrumentation. The advent of generative AI presents an opportunity to bridge this knowledge gap, enabling seamless communication and efficient experimental workflows. Here we present a modular architecture for the Virtual Scientific Companion (VISION) by assembling multiple AI-enabled cognitive blocks that each scaffolds large language models (LLMs) for a specialized task. With VISION, we performed LLM-based operation on the beamline workstation with low latency and demonstrated the first voice-controlled experiment at an X-ray scattering beamline. The modular and scalable architecture allows for easy adaptation to new instrument and capabilities. Development on natural language-based scientific experimentation is a building block for an impending future where a science exocortex -- a synthetic extension to the cognition of scientists -- may radically transform scientific practice and discovery.
Abstract:The extraordinarily high X-ray flux and specialized instrumentation at synchrotron beamlines have enabled versatile in-situ and high throughput studies that are impossible elsewhere. Dexterous and efficient control of experiments are thus crucial for efficient beamline operation. Artificial intelligence and machine learning methods are constantly being developed to enhance facility performance, but the full potential of these developments can only be reached with efficient human-computer-interaction. Natural language is the most intuitive and efficient way for humans to communicate. However, the low credibility and reproducibility of existing large language models and tools demand extensive development to be made for robust and reliable performance for scientific purposes. In this work, we introduce the prototype of virtual scientific companion (VISION) and demonstrate that it is possible to control basic beamline operations through natural language with open-source language model and the limited computational resources at beamline. The human-AI nature of VISION leverages existing automation systems and data framework at synchrotron beamlines.