Abstract:Redescription mining is a data analysis technique that has found applications in diverse fields. The most used redescription mining approaches involve two phases: finding matching pairs among data attributes and extending the pairs. This process is relatively efficient when the number of attributes remains limited and when the attributes are Boolean, but becomes almost intractable when the data consist of many numerical attributes. In this paper, we present new algorithms that perform the matching and extension orders of magnitude faster than the existing approaches. Our algorithms are based on locality-sensitive hashing with a tailored approach to handle the discretisation of numerical attributes as used in redescription mining.
Abstract:We are interested in understanding the underlying generation process for long sequences of symbolic events. To do so, we propose COSSU, an algorithm to mine small and meaningful sets of sequential rules. The rules are selected using an MDL-inspired criterion that favors compactness and relies on a novel rule-based encoding scheme for sequences. Our evaluation shows that COSSU can successfully retrieve relevant sets of closed sequential rules from a long sequence. Such rules constitute an interpretable model that exhibits competitive accuracy for the tasks of next-element prediction and classification.
Abstract:This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems.