Abstract:A link stream is a set of possibly weighted triplets (t, u, v) modeling that u and v interacted at time t. Link streams offer an effective model for datasets containing both temporal and relational information, making their proper analysis crucial in many applications. They are commonly regarded as sequences of graphs or collections of time series. Yet, a recent seminal work demonstrated that link streams are more general objects of which graphs are only particular cases. It therefore started the construction of a dedicated formalism for link streams by extending graph theory. In this work, we contribute to the development of this formalism by showing that link streams also generalize time series. In particular, we show that a link stream corresponds to a time-series extended to a relational dimension, which opens the door to also extend the framework of signal processing to link streams. We therefore develop extensions of numerous signal concepts to link streams: from elementary ones like energy, correlation, and differentiation, to more advanced ones like Fourier transform and filters.
Abstract:A link stream is a set of triplets $(t, u, v)$ indicating that $u$ and $v$ interacted at time $t$. Link streams model numerous datasets and their proper study is crucial in many applications. In practice, raw link streams are often aggregated or transformed into time series or graphs where decisions are made. Yet, it remains unclear how the dynamical and structural information of a raw link stream carries into the transformed object. This work shows that it is possible to shed light into this question by studying link streams via algebraically linear graph and signal operators, for which we introduce a novel linear matrix framework for the analysis of link streams. We show that, due to their linearity, most methods in signal processing can be easily adopted by our framework to analyze the time/frequency information of link streams. However, the availability of linear graph methods to analyze relational/structural information is limited. We address this limitation by developing (i) a new basis for graphs that allow us to decompose them into structures at different resolution levels; and (ii) filters for graphs that allow us to change their structural information in a controlled manner. By plugging-in these developments and their time-domain counterpart into our framework, we are able to (i) obtain a new basis for link streams that allow us to represent them in a frequency-structure domain; and (ii) show that many interesting transformations to link streams, like the aggregation of interactions or their embedding into a euclidean space, can be seen as simple filters in our frequency-structure domain.
Abstract:Many systems generate data as a set of triplets (a, b, c): they may represent that user a called b at time c or that customer a purchased product b in store c. These datasets are traditionally studied as networks with an extra dimension (time or layer), for which the fields of temporal and multiplex networks have extended graph theory to account for the new dimension. However, such frameworks detach one variable from the others and allow to extend one same concept in many ways, making it hard to capture patterns across all dimensions and to identify the best definitions for a given dataset. This extended abstract overrides this vision and proposes a direct processing of the set of triplets. In particular, our work shows that a more general analysis is possible by partitioning the data and building categorical propositions that encode informative patterns. We show that several concepts from graph theory can be framed under this formalism and leverage such insights to extend the concepts to data triplets. Lastly, we propose an algorithm to list propositions satisfying specific constraints and apply it to a real world dataset.
Abstract:The personalized PageRank algorithm is one of the most versatile tools for the analysis of networks. In spite of its ubiquity, maintaining personalized PageRank vectors when the underlying network constantly evolves is still a challenging task. To address this limitation, this work proposes a novel distributed algorithm to locally update personalized PageRank vectors when the graph topology changes. The proposed algorithm is based on the use of Chebyshev polynomials and a novel update equation that encompasses a large family of PageRank-based methods. In particular, the algorithm has the following advantages: (i) it has faster convergence speed than state-of-the-art alternatives for local PageRank updating; and (ii) it can update the solution of recent generalizations of PageRank for which no updating algorithms have been developed. Experiments in a real-world temporal network of an autonomous system validate the effectiveness of the proposed algorithm.
Abstract:PageRank for Semi-Supervised Learning has shown to leverage data structures and limited tagged examples to yield meaningful classification. Despite successes, classification performance can still be improved, particularly in cases of fuzzy graphs or unbalanced labeled data. To address such limitations, a novel approach based on powers of the Laplacian matrix $L^\gamma$ ($\gamma > 0$), referred to as $L^\gamma$-PageRank, is proposed. Its theoretical study shows that it operates on signed graphs, where nodes belonging to one same class are more likely to share positive edges while nodes from different classes are more likely to be connected with negative edges. It is shown that by selecting an optimal $\gamma$, classification performance can be significantly enhanced. A procedure for the automated estimation of the optimal $\gamma$, from a unique observation of data, is devised and assessed. Experiments on several datasets demonstrate the effectiveness of both $L^\gamma$-PageRank classification and the optimal $\gamma$ estimation.