Abstract:Addressing the so-called ``Red-AI'' trend of rising energy consumption by large-scale neural networks, this study investigates the actual energy consumption, as measured by node-level watt-meters, of training various fully connected neural network architectures. We introduce the BUTTER-E dataset, an augmentation to the BUTTER Empirical Deep Learning dataset, containing energy consumption and performance data from 63,527 individual experimental runs spanning 30,582 distinct configurations: 13 datasets, 20 sizes (number of trainable parameters), 8 network ``shapes'', and 14 depths on both CPU and GPU hardware collected using node-level watt-meters. This dataset reveals the complex relationship between dataset size, network structure, and energy use, and highlights the impact of cache effects. We propose a straightforward and effective energy model that accounts for network size, computing, and memory hierarchy. Our analysis also uncovers a surprising, hardware-mediated non-linear relationship between energy efficiency and network design, challenging the assumption that reducing the number of parameters or FLOPs is the best way to achieve greater energy efficiency. Highlighting the need for cache-considerate algorithm development, we suggest a combined approach to energy efficient network, algorithm, and hardware design. This work contributes to the fields of sustainable computing and Green AI, offering practical guidance for creating more energy-efficient neural networks and promoting sustainable AI.
Abstract:Traffic signals play an important role in transportation by enabling traffic flow management, and ensuring safety at intersections. In addition, knowing the traffic signal phase and timing data can allow optimal vehicle routing for time and energy efficiency, eco-driving, and the accurate simulation of signalized road networks. In this paper, we present a machine learning (ML) method for estimating traffic signal timing information from vehicle probe data. To the authors best knowledge, very few works have presented ML techniques for determining traffic signal timing parameters from vehicle probe data. In this work, we develop an Extreme Gradient Boosting (XGBoost) model to estimate signal cycle lengths and a neural network model to determine the corresponding red times per phase from probe data. The green times are then be derived from the cycle length and red times. Our results show an error of less than 0.56 sec for cycle length, and red times predictions within 7.2 sec error on average.