Abstract:We present a novel variant of Domain Adversarial Networks with impactful improvements to the loss functions, training paradigm, and hyperparameter optimization. New loss functions are defined for both forks of the DANN network, the label predictor and domain classifier, in order to facilitate more rapid gradient descent, provide more seamless integration into modern neural networking frameworks, and allow previously unavailable inferences into network behavior. Using these loss functions, it is possible to extend the concept of 'domain' to include arbitrary user defined labels applicable to subsets of the training data, the test data, or both. As such, the network can be operated in either 'On the Fly' mode where features provided by the feature extractor indicative of differences between 'domain' labels in the training data are removed or in 'Test Collection Informed' mode where features indicative of difference between 'domain' labels in the combined training and test data are removed (without needing to know or provide test activity labels to the network). This work also draws heavily from previous works on Robust Training which draws training examples from a L_inf ball around the training data in order to remove fragile features induced by random fluctuations in the data. On these networks we explore the process of hyperparameter optimization for both the domain adversarial and robust hyperparameters. Finally, this network is applied to the construction of a binary classifier used to identify the presence of EM signal emitted by a turbopump. For this example, the effect of the robust and domain adversarial training is to remove features indicative of the difference in background between instances of operation of the device - providing highly discriminative features on which to construct the classifier.
Abstract:Unintended radiated emissions arise during the use of electronic devices. Identifying and mitigating the effects of these emissions is a key element of modern power engineering and associated control systems. Signal processing of the electrical system can identify the sources of these emissions. A dataset known as Flaming Moes includes captured unintended radiated emissions from consumer electronics. This dataset was analyzed to construct next-generation methods for device identification. To this end, a neural network based on applying the ResNet-18 image classification architecture to the short time Fourier transforms of short segments of voltage signatures was constructed. Using this classifier, the 18 device classes and background class were identified with close to 100 percent accuracy. By applying LIME to this classifier and aggregating the results over many classifications for the same device, it was possible to determine the frequency bands used by the classifier to make decisions. Using ensembles of classifiers trained on very similar datasets from the same parent data distribution, it was possible to recover robust sets of features of device output useful for identification. The additional understanding provided by the application of LIME enhances the trainability, trustability, and transferability of URE analysis networks.
Abstract:Measurements in Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors, such as the MicroBooNE detector at Fermilab, feature large, high fidelity event images. Deep learning techniques have been extremely successful in classification tasks of photographs, but their application to LArTPC event images is challenging, due to the large size of the events. Events in these detectors are typically two orders of magnitude larger than images found in classical challenges, like recognition of handwritten digits contained in the MNIST database or object recognition in the ImageNet database. Ideally, training would occur on many instances of the entire event data, instead of many instances of cropped regions of interest from the event data. However, such efforts lead to extremely long training cycles, which slow down the exploration of new network architectures and hyperparameter scans to improve the classification performance. We present studies of scaling a LArTPC classification problem on multiple architectures, spanning multiple nodes. The studies are carried out on simulated events in the MicroBooNE detector. We emphasize that it is beyond the scope of this study to optimize networks or extract the physics from any results here. Institutional computing at Pacific Northwest National Laboratory and the SummitDev machine at Oak Ridge National Laboratory's Leadership Computing Facility have been used. To our knowledge, this is the first use of state-of-the-art Convolutional Neural Networks for particle physics and their attendant compute techniques onto the DOE Leadership Class Facilities. We expect benefits to accrue particularly to the Deep Underground Neutrino Experiment (DUNE) LArTPC program, the flagship US High Energy Physics (HEP) program for the coming decades.