Abstract:Despite the multifaceted recent advances in interventional causal representation learning (CRL), they primarily focus on the stylized assumption of single-node interventions. This assumption is not valid in a wide range of applications, and generally, the subset of nodes intervened in an interventional environment is fully unknown. This paper focuses on interventional CRL under unknown multi-node (UMN) interventional environments and establishes the first identifiability results for general latent causal models (parametric or nonparametric) under stochastic interventions (soft or hard) and linear transformation from the latent to observed space. Specifically, it is established that given sufficiently diverse interventional environments, (i) identifiability up to ancestors is possible using only soft interventions, and (ii) perfect identifiability is possible using hard interventions. Remarkably, these guarantees match the best-known results for more restrictive single-node interventions. Furthermore, CRL algorithms are also provided that achieve the identifiability guarantees. A central step in designing these algorithms is establishing the relationships between UMN interventional CRL and score functions associated with the statistical models of different interventional environments. Establishing these relationships also serves as constructive proof of the identifiability guarantees.
Abstract:This paper addresses intervention-based causal representation learning (CRL) under a general nonparametric latent causal model and an unknown transformation that maps the latent variables to the observed variables. Linear and general transformations are investigated. The paper addresses both the \emph{identifiability} and \emph{achievability} aspects. Identifiability refers to determining algorithm-agnostic conditions that ensure recovering the true latent causal variables and the latent causal graph underlying them. Achievability refers to the algorithmic aspects and addresses designing algorithms that achieve identifiability guarantees. By drawing novel connections between \emph{score functions} (i.e., the gradients of the logarithm of density functions) and CRL, this paper designs a \emph{score-based class of algorithms} that ensures both identifiability and achievability. First, the paper focuses on \emph{linear} transformations and shows that one stochastic hard intervention per node suffices to guarantee identifiability. It also provides partial identifiability guarantees for soft interventions, including identifiability up to ancestors for general causal models and perfect latent graph recovery for sufficiently non-linear causal models. Secondly, it focuses on \emph{general} transformations and shows that two stochastic hard interventions per node suffice for identifiability. Notably, one does \emph{not} need to know which pair of interventional environments have the same node intervened.
Abstract:This paper focuses on causal representation learning (CRL) under a general nonparametric causal latent model and a general transformation model that maps the latent data to the observational data. It establishes \textbf{identifiability} and \textbf{achievability} results using two hard \textbf{uncoupled} interventions per node in the latent causal graph. Notably, one does not know which pair of intervention environments have the same node intervened (hence, uncoupled environments). For identifiability, the paper establishes that perfect recovery of the latent causal model and variables is guaranteed under uncoupled interventions. For achievability, an algorithm is designed that uses observational and interventional data and recovers the latent causal model and variables with provable guarantees for the algorithm. This algorithm leverages score variations across different environments to estimate the inverse of the transformer and, subsequently, the latent variables. The analysis, additionally, recovers the existing identifiability result for two hard \textbf{coupled} interventions, that is when metadata about the pair of environments that have the same node intervened is known. It is noteworthy that the existing results on non-parametric identifiability require assumptions on interventions and additional faithfulness assumptions. This paper shows that when observational data is available, additional faithfulness assumptions are unnecessary.