Abstract:Recent vision-language models outperform vision-only models on many image classification tasks. However, because of the absence of paired text/image descriptions, it remains difficult to fine-tune these models for fine-grained image classification. In this work, we propose a method, GIST, for generating image-specific fine-grained text descriptions from image-only datasets, and show that these text descriptions can be used to improve classification. Key parts of our method include 1. prompting a pretrained large language model with domain-specific prompts to generate diverse fine-grained text descriptions for each class and 2. using a pretrained vision-language model to match each image to label-preserving text descriptions that capture relevant visual features in the image. We demonstrate the utility of GIST by fine-tuning vision-language models on the image-and-generated-text pairs to learn an aligned vision-language representation space for improved classification. We evaluate our learned representation space in full-shot and few-shot scenarios across four diverse fine-grained classification datasets, each from a different domain. Our method achieves an average improvement of $4.1\%$ in accuracy over CLIP linear probes and an average of $1.1\%$ improvement in accuracy over the previous state-of-the-art image-text classification method on the full-shot datasets. Our method achieves similar improvements across few-shot regimes. Code is available at https://github.com/emu1729/GIST.
Abstract:Given a similarity metric, contrastive methods learn a representation in which examples that are similar are pushed together and examples that are dissimilar are pulled apart. Contrastive learning techniques have been utilized extensively to learn representations for tasks ranging from image classification to caption generation. However, existing contrastive learning approaches can fail to generalize because they do not take into account the possibility of different similarity relations. In this paper, we propose a novel multi-similarity contrastive loss (MSCon), that learns generalizable embeddings by jointly utilizing supervision from multiple metrics of similarity. Our method automatically learns contrastive similarity weightings based on the uncertainty in the corresponding similarity, down-weighting uncertain tasks and leading to better out-of-domain generalization to new tasks. We show empirically that networks trained with MSCon outperform state-of-the-art baselines on in-domain and out-of-domain settings.