Abstract:It has been shown that Large Language Models' (LLMs) performance can be improved for many tasks using Chain of Thought (CoT) or In-Context Learning (ICL), which involve demonstrating the steps needed to solve a task using a few examples. However, while datasets with input-output pairs are relatively easy to produce, providing demonstrations which include intermediate steps requires cumbersome manual work. These steps may be executable programs, as in agentic flows, or step-by-step reasoning as in CoT. In this work, we propose Automatic Data Labeling and Refinement (ADLR), a method to automatically generate and filter demonstrations which include the above intermediate steps, starting from a small seed of manually crafted examples. We demonstrate the advantage of ADLR in code-based table QA and mathematical reasoning, achieving up to a 5.5% gain. The code implementing our method is provided in the Supplementary material and will be made available.