Abstract:This study explores the promising potential of integrating sensing capabilities into multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM)-based networks through innovative multi-sensor fusion techniques, tracking algorithms, and resource management. A novel data fusion technique is proposed within the MIMO-OFDM system, which promotes cooperative sensing among monostatic joint sensing and communication (JSC) base stations by sharing range-angle maps with a central fusion center. To manage data sharing and control network overhead introduced by cooperation, an excision filter is introduced at each base station. After data fusion, the framework employs a three-step clustering procedure combined with a tracking algorithm to effectively handle point-like and extended targets. Delving into the sensing/communication trade-off, resources such as transmit power, frequency, and time are varied, providing valuable insights into their impact on the overall system performance. Additionally, a sophisticated channel model is proposed, accounting for complex urban propagation scenarios and addressing multipath effects and multiple reflection points for extended targets like vehicles. Evaluation metrics, including optimal sub-pattern assignment (OSPA), downlink sum rate, and bit rate, offer a comprehensive assessment of the system's localization and communication capabilities, as well as network overhead.
Abstract:In this work, we investigate the performance of a joint sensing and communication (JSC) network consisting of multiple base stations (BSs) that cooperate through a fusion center (FC) to exchange information about the sensed environment while concurrently establishing communication links with a set of user equipments (UEs). Each BS within the network operates as a monostatic radar system, enabling comprehensive scanning of the monitored area and generating range-angle maps that provide information regarding the position of a group of heterogeneous objects. The acquired maps are subsequently fused in the FC. Then, a convolutional neural network (CNN) is employed to infer the category of the targets, e.g., pedestrians or vehicles, and such information is exploited by an adaptive clustering algorithm to group the detections originating from the same target more effectively. Finally, two multi-target tracking algorithms, the probability hypothesis density (PHD) filter and multi-Bernoulli mixture (MBM) filter, are applied to estimate the state of the targets. Numerical results demonstrated that our framework could provide remarkable sensing performance, achieving an optimal sub-pattern assignment (OSPA) less than 60 cm, while keeping communication services to UEs with a reduction of the communication capacity in the order of 10% to 20%. The impact of the number of BSs engaged in sensing is also examined, and we show that in the specific case study, 3 BSs ensure a localization error below 1 m.