Abstract:The post-training quantization (PTQ) challenge of bringing quantized neural net accuracy close to original has drawn much attention driven by industry demand. Many of the methods emphasize optimization of a specific degree-of-freedom (DoF), such as quantization step size, preconditioning factors, bias fixing, often chained to others in multi-step solutions. Here we rethink quantized network parameterization in HW-aware fashion, towards a unified analysis of all quantization DoF, permitting for the first time their joint end-to-end finetuning. Our single-step simple and extendable method, dubbed quantization-aware finetuning (QFT), achieves 4-bit weight quantization results on-par with SoTA within PTQ constraints of speed and resource.
Abstract:Quantization of neural networks has become common practice, driven by the need for efficient implementations of deep neural networks on embedded devices. In this paper, we exploit an oft-overlooked degree of freedom in most networks - for a given layer, individual output channels can be scaled by any factor provided that the corresponding weights of the next layer are inversely scaled. Therefore, a given network has many factorizations which change the weights of the network without changing its function. We present a conceptually simple and easy to implement method that uses this property and show that proper factorizations significantly decrease the degradation caused by quantization. We show improvement on a wide variety of networks and achieve state-of-the-art degradation results for MobileNets. While our focus is on quantization, this type of factorization is applicable to other domains such as network-pruning, neural nets regularization and network interpretability.