Abstract:Large language models (LLMs) are often trained on extensive, temporally indiscriminate text corpora, reflecting the lack of datasets with temporal metadata. This approach is not aligned with the evolving nature of language. Conventional methods for creating temporally adapted language models often depend on further pre-training static models on time-specific data. This paper presents a new approach: a series of point-in-time LLMs called Time Machine GPT (TiMaGPT), specifically designed to be nonprognosticative. This ensures they remain uninformed about future factual information and linguistic changes. This strategy is beneficial for understanding language evolution and is of critical importance when applying models in dynamic contexts, such as time-series forecasting, where foresight of future information can prove problematic. We provide access to both the models and training datasets.
Abstract:We develop FinText, a novel, state-of-the-art, financial word embedding from Dow Jones Newswires Text News Feed Database. Incorporating this word embedding in a machine learning model produces a substantial increase in volatility forecasting performance on days with volatility jumps for 23 NASDAQ stocks from 27 July 2007 to 18 November 2016. A simple ensemble model, combining our word embedding and another machine learning model that uses limit order book data, provides the best forecasting performance for both normal and jump volatility days. Finally, we use Integrated Gradients and SHAP (SHapley Additive exPlanations) to make the results more 'explainable' and the model comparisons more transparent.