Abstract:Purpose: Current 3D Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) protocols use transient-state, gradient-spoiled gradient-echo sequences that are prone to cerebrospinal fluid (CSF) pulsation artifacts when applied to the brain. This study aims at developing a 3D MR-STAT protocol for whole-brain relaxometry that overcomes the challenges posed by CSF-induced ghosting artifacts. Method: We optimized the flip-angle train within the Cartesian 3D MR-STAT framework to achieve two objectives: (1) minimization of the noise level in the reconstructed quantitative maps, and (2) reduction of the CSF-to-white-matter signal ratio to suppress CSF signal and the associated pulsation artifacts. The optimized new sequence was tested on a gel/water-phantom to evaluate the accuracy of the quantitative maps, and on healthy volunteers to explore the effectiveness of the CSF artifact suppression and robustness of the new protocol. Results: A new optimized sequence with both high parameter encoding capability and low CSF intensity was proposed and initially validated in the gel/water-phantom experiment. From in-vivo experiments with five volunteers, the proposed CSF-suppressed sequence shows no CSF ghosting artifacts and overall greatly improved image quality for all quantitative maps compared to the baseline sequence. Statistical analysis indicated low inter-subject and inter-scan variability for quantitative parameters in gray matter and white matter (1.6%-2.4% for T1 and 2.0%-4.6% for T2), demonstrating the robustness of the new sequence. Conclusion: We presented a new 3D MR-STAT sequence with CSF suppression that effectively eliminates CSF pulsation artifacts. The new sequence ensures consistently high-quality, 1mm^3 whole-brain relaxometry within a rapid 5.5-minute scan time.
Abstract:Purpose: This work aims to address the limitations faced by researchers in developing and sharing new MRI sequences by implementing an interpreter for the open-source MRI pulse sequence format, Pulseq, on a Philips MRI scanner. Methods: The implementation involved modifying a few source code files to create a Pulseq interpreter for the Philips MRI system. Validation experiments were conducted using simulations and phantom scans performed on a 7T Achieva MRI system. The observed sequence and waveforms were compared to the intended ones, and the gradient waveforms produced by the scanner were verified using a field camera. Image reconstruction was performed using the raw k-space samples acquired from both the native vendor environment and the Pulseq interpreter. Results: The reconstructed images obtained through the Pulseq implementation were found to be comparable to those obtained through the native implementation. The performance of the Pulseq interpreter was assessed by profiling the CPU utilization of the MRI spectrometer, showing minimal resource utilization for certain sequences. Conclusion: The successful implementation of the Pulseq interpreter on the Philips MRI scanner demonstrates the feasibility of utilizing Pulseq sequences on Philips MRI scanners. This provides an open-source platform for MRI sequence development, facilitating collaboration among researchers and accelerating scientific progress in the field of MRI.