Abstract:Despite recent progress, Multi-Object Tracking (MOT) continues to face significant challenges, particularly its dependence on prior knowledge and predefined categories, complicating the tracking of unfamiliar objects. Generic Multiple Object Tracking (GMOT) emerges as a promising solution, requiring less prior information. Nevertheless, existing GMOT methods, primarily designed as OneShot-GMOT, rely heavily on initial bounding boxes and often struggle with variations in viewpoint, lighting, occlusion, and scale. To overcome the limitations inherent in both MOT and GMOT when it comes to tracking objects with specific generic attributes, we introduce Grounded-GMOT, an innovative tracking paradigm that enables users to track multiple generic objects in videos through natural language descriptors. Our contributions begin with the introduction of the G2MOT dataset, which includes a collection of videos featuring a wide variety of generic objects, each accompanied by detailed textual descriptions of their attributes. Following this, we propose a novel tracking method, KAM-SORT, which not only effectively integrates visual appearance with motion cues but also enhances the Kalman filter. KAM-SORT proves particularly advantageous when dealing with objects of high visual similarity from the same generic category in GMOT scenarios. Through comprehensive experiments, we demonstrate that Grounded-GMOT outperforms existing OneShot-GMOT approaches. Additionally, our extensive comparisons between various trackers highlight KAM-SORT's efficacy in GMOT, further establishing its significance in the field. Project page: https://UARK-AICV.github.io/G2MOT. The source code and dataset will be made publicly available.
Abstract:While Multi-Object Tracking (MOT) has made substantial advancements, it is limited by heavy reliance on prior knowledge and limited to predefined categories. In contrast, Generic Multiple Object Tracking (GMOT), tracking multiple objects with similar appearance, requires less prior information about the targets but faces challenges with variants like viewpoint, lighting, occlusion, and resolution. Our contributions commence with the introduction of the \textbf{\text{Refer-GMOT dataset}} a collection of videos, each accompanied by fine-grained textual descriptions of their attributes. Subsequently, we introduce a novel text prompt-based open-vocabulary GMOT framework, called \textbf{\text{TP-GMOT}}, which can track never-seen object categories with zero training examples. Within \text{TP-GMOT} framework, we introduce two novel components: (i) {\textbf{\text{TP-OD}}, an object detection by a textual prompt}, for accurately detecting unseen objects with specific characteristics. (ii) Motion-Appearance Cost SORT \textbf{\text{MAC-SORT}}, a novel object association approach that adeptly integrates motion and appearance-based matching strategies to tackle the complex task of tracking multiple generic objects with high similarity. Our contributions are benchmarked on the \text{Refer-GMOT} dataset for GMOT task. Additionally, to assess the generalizability of the proposed \text{TP-GMOT} framework and the effectiveness of \text{MAC-SORT} tracker, we conduct ablation studies on the DanceTrack and MOT20 datasets for the MOT task. Our dataset, code, and models will be publicly available at: https://fsoft-aic.github.io/TP-GMOT