Abstract:In this work, we investigate various state-of-the-art (SOTA) speech pre-trained models (PTMs) for their capability to capture prosodic signatures of the generative sources for audio deepfake source attribution (ADSD). These prosodic characteristics can be considered one of major signatures for ADSD, which is unique to each source. So better is the PTM at capturing prosodic signs better the ADSD performance. We consider various SOTA PTMs that have shown top performance in different prosodic tasks for our experiments on benchmark datasets, ASVSpoof 2019 and CFAD. x-vector (speaker recognition PTM) attains the highest performance in comparison to all the PTMs considered despite consisting lowest model parameters. This higher performance can be due to its speaker recognition pre-training that enables it for capturing unique prosodic characteristics of the sources in a better way. Further, motivated from tasks such as audio deepfake detection and speech recognition, where fusion of PTMs representations lead to improved performance, we explore the same and propose FINDER for effective fusion of such representations. With fusion of Whisper and x-vector representations through FINDER, we achieved the topmost performance in comparison to all the individual PTMs as well as baseline fusion techniques and attaining SOTA performance.
Abstract:In this work, we present, AVR application for audio-visual humor detection. While humor detection has traditionally centered around textual analysis, recent advancements have spotlighted multimodal approaches. However, these methods lean on textual cues as a modality, necessitating the use of ASR systems for transcribing the audio-data. This heavy reliance on ASR accuracy can pose challenges in real-world applications. To address this bottleneck, we propose an innovative audio-visual humor detection system that circumvents textual reliance, eliminating the need for ASR models. Instead, the proposed approach hinges on the intricate interplay between audio and visual content for effective humor detection.