Abstract:A recent source of concern for the security of neural networks is the emergence of clean-label dataset poisoning attacks, wherein correctly labeled poisoned samples are injected in the training dataset. While these poisons look legitimate to the human observer, they contain malicious characteristics that trigger a targeted misclassification during inference. We propose a scalable and transferable clean-label attack, Bullseye Polytope, which creates poison images centered around the target image in the feature space. Bullseye Polytope improves the attack success rate of the current state-of-the-art by 26.75% in end-to-end training, while increasing attack speed by a factor of 12. We further extend Bullseye Polytope to a more practical attack model by including multiple images of the same object (e.g., from different angles) in crafting the poisoned samples. We demonstrate that this extension improves attack transferability by over 16% to unseen images (of the same object) without increasing the number of poisons.
Abstract:Deep learning has shown promising results on hard perceptual problems in recent years. However, deep learning systems are found to be vulnerable to small adversarial perturbations that are nearly imperceptible to human. Such specially crafted perturbations cause deep learning systems to output incorrect decisions, with potentially disastrous consequences. These vulnerabilities hinder the deployment of deep learning systems where safety or security is important. Attempts to secure deep learning systems either target specific attacks or have been shown to be ineffective. In this paper, we propose MagNet, a framework for defending neural network classifiers against adversarial examples. MagNet does not modify the protected classifier or know the process for generating adversarial examples. MagNet includes one or more separate detector networks and a reformer network. Different from previous work, MagNet learns to differentiate between normal and adversarial examples by approximating the manifold of normal examples. Since it does not rely on any process for generating adversarial examples, it has substantial generalization power. Moreover, MagNet reconstructs adversarial examples by moving them towards the manifold, which is effective for helping classify adversarial examples with small perturbation correctly. We discuss the intrinsic difficulty in defending against whitebox attack and propose a mechanism to defend against graybox attack. Inspired by the use of randomness in cryptography, we propose to use diversity to strengthen MagNet. We show empirically that MagNet is effective against most advanced state-of-the-art attacks in blackbox and graybox scenarios while keeping false positive rate on normal examples very low.