Abstract:The widespread use of various chemical gases in industrial processes necessitates effective measures to prevent their leakage during transportation and storage, given their high toxicity. Thermal infrared-based computer vision detection techniques provide a straightforward approach to identify gas leakage areas. However, the development of high-quality algorithms has been challenging due to the low texture in thermal images and the lack of open-source datasets. In this paper, we present the RGB-Thermal Cross Attention Network (RT-CAN), which employs an RGB-assisted two-stream network architecture to integrate texture information from RGB images and gas area information from thermal images. Additionally, to facilitate the research of invisible gas detection, we introduce Gas-DB, an extensive open-source gas detection database including about 1.3K well-annotated RGB-thermal images with eight variant collection scenes. Experimental results demonstrate that our method successfully leverages the advantages of both modalities, achieving state-of-the-art (SOTA) performance among RGB-thermal methods, surpassing single-stream SOTA models in terms of accuracy, Intersection of Union (IoU), and F2 metrics by 4.86%, 5.65%, and 4.88%, respectively. The code and data will be made available soon.
Abstract:Geometric rectification of images of distorted documents finds wide applications in document digitization and Optical Character Recognition (OCR). Although smoothly curved deformations have been widely investigated by many works, the most challenging distortions, e.g. complex creases and large foldings, have not been studied in particular. The performance of existing approaches, when applied to largely creased or folded documents, is far from satisfying, leaving substantial room for improvement. To tackle this task, knowledge about document rectification should be incorporated into the computation, among which the developability of 3D document models and particular textural features in the images, such as straight lines, are the most essential ones. For this purpose, we propose a general framework of document image rectification in which a computational isometric mapping model is utilized for expressing a 3D document model and its flattening in the plane. Based on this framework, both model developability and textural features are considered in the computation. The experiments and comparisons to the state-of-the-art approaches demonstrated the effectiveness and outstanding performance of the proposed method. Our method is also flexible in that the rectification results can be enhanced by any other methods that extract high-quality feature lines in the images.