Abstract:Wind downscaling is essential for improving the spatial resolution of weather forecasts, particularly in operational Numerical Weather Prediction (NWP). This study advances wind downscaling by extending the DownGAN framework introduced by Annau et al.,to operational datasets from the Global Deterministic Prediction System (GDPS) and High-Resolution Deterministic Prediction System (HRDPS), covering the entire Canadian domain. We enhance the model by incorporating high-resolution static covariates, such as HRDPS-derived topography, into a Conditional Wasserstein Generative Adversarial Network with Gradient Penalty, implemented using a UNET-based generator. Following the DownGAN framework, our methodology integrates low-resolution GDPS forecasts (15 km, 10-day horizon) and high-resolution HRDPS forecasts (2.5 km, 48-hour horizon) with Frequency Separation techniques adapted from computer vision. Through robust training and inference over the Canadian region, we demonstrate the operational scalability of our approach, achieving significant improvements in wind downscaling accuracy. Statistical validation highlights reductions in root mean square error (RMSE) and log spectral distance (LSD) metrics compared to the original DownGAN. High-resolution conditioning covariates and Frequency Separation strategies prove instrumental in enhancing model performance. This work underscores the potential for extending high-resolution wind forecasts beyond the 48-hour horizon, bridging the gap to the 10-day low resolution global forecast window.
Abstract:Heatwaves, prolonged periods of extreme heat, have intensified in frequency and severity due to climate change, posing substantial risks to public health, ecosystems, and infrastructure. Despite advancements in Machine Learning (ML) modeling, accurate heatwave forecasting at weather scales (1--15 days) remains challenging due to the non-linear interactions between atmospheric drivers and the rarity of these extreme events. Traditional models relying on heuristic feature engineering often fail to generalize across diverse climates and capture the complexities of heatwave dynamics. This study introduces the Distribution-Informed Graph Neural Network (DI-GNN), a novel framework that integrates principles from Extreme Value Theory (EVT) into the graph neural network architecture. DI-GNN incorporates Generalized Pareto Distribution (GPD)-derived descriptors into the feature space, adjacency matrix, and loss function to enhance its sensitivity to rare heatwave occurrences. By prioritizing the tails of climatic distributions, DI-GNN addresses the limitations of existing methods, particularly in imbalanced datasets where traditional metrics like accuracy are misleading. Empirical evaluations using weather station data from British Columbia, Canada, demonstrate the superior performance of DI-GNN compared to baseline models. DI-GNN achieved significant improvements in balanced accuracy, recall, and precision, with high AUC and average precision scores, reflecting its robustness in distinguishing heatwave events.