Abstract:A lot of effort is currently invested in safeguarding autonomous driving systems, which heavily rely on deep neural networks for computer vision. We investigate the coupling of different neural network calibration measures with a special focus on the Area Under the Sparsification Error curve (AUSE) metric. We elaborate on the well-known inconsistency in determining optimal calibration using the Expected Calibration Error (ECE) and we demonstrate similar issues for the AUSE, the Uncertainty Calibration Score (UCS), as well as the Uncertainty Calibration Error (UCE). We conclude that the current methodologies leave a degree of freedom, which prevents a unique model calibration for the homologation of safety-critical functionalities. Furthermore, we propose the AUSE as an indirect measure for the residual uncertainty, which is irreducible for a fixed network architecture and is driven by the stochasticity in the underlying data generation process (aleatoric contribution) as well as the limitation in the hypothesis space (epistemic contribution).
Abstract:Autonomous driving perception techniques are typically based on supervised machine learning models that are trained on real-world street data. A typical training process involves capturing images with a single car model and windshield configuration. However, deploying these trained models on different car types can lead to a domain shift, which can potentially hurt the neural networks performance and violate working ADAS requirements. To address this issue, this paper investigates the domain shift problem further by evaluating the sensitivity of two perception models to different windshield configurations. This is done by evaluating the dependencies between neural network benchmark metrics and optical merit functions by applying a Fourier optics based threat model. Our results show that there is a performance gap introduced by windshields and existing optical metrics used for posing requirements might not be sufficient.
Abstract:Windscreen optical quality is an important aspect of any advanced driver assistance system, and also for future autonomous driving, as today at least some cameras of the sensor suite are situated behind the windscreen. Automotive mass production processes require measurement systems that characterize the optical quality of the windscreens in a meaningful way, which for modern perception stacks implies meaningful for artificial intelligence (AI) algorithms. The measured optical quality needs to be linked to the performance of these algorithms, such that performance limits - and thus production tolerance limits - can be defined. In this article we demonstrate that the main metric established in the industry - refractive power - is fundamentally not capable of capturing relevant optical properties of windscreens. Further, as the industry is moving towards the modulation transfer function (MTF) as an alternative, we mathematically show that this metric cannot be used on windscreens alone, but that the windscreen forms a novel optical system together with the optics of the camera system. Hence, the required goal of a qualification system that is installed at the windscreen supplier and independently measures the optical quality cannot be achieved using MTF. We propose a novel concept to determine the optical quality of windscreens and to use simulation to link this optical quality to the performance of AI algorithms, which can hopefully lead to novel inspection systems.