Abstract:We introduce a method for learning representations that are equivariant with respect to general group actions over data. Differently from existing equivariant representation learners, our method is suitable for actions that are not free i.e., that stabilize data via nontrivial symmetries. Our method is grounded in the orbit-stabilizer theorem from group theory, which guarantees that an ideal learner infers an isomorphic representation. Finally, we provide an empirical investigation on image datasets with rotational symmetries and show that taking stabilizers into account improves the quality of the representations.
Abstract:This paper focuses on detecting anomalies in a digital video broadcasting (DVB) system from providers' perspective. We learn a probabilistic deterministic real timed automaton profiling benign behavior of encryption control in the DVB control access system. This profile is used as a one-class classifier. Anomalous items in a testing sequence are detected when the sequence is not accepted by the learned model.