Abstract:In decision-making problems with limited training data, policy functions approximated using deep neural networks often exhibit suboptimal performance. An alternative approach involves learning a world model from the limited data and determining actions through online search. However, the performance is adversely affected by compounding errors arising from inaccuracies in the learnt world model. While methods like TreeQN have attempted to address these inaccuracies by incorporating algorithmic structural biases into their architectures, the biases they introduce are often weak and insufficient for complex decision-making tasks. In this work, we introduce Differentiable Tree Search (DTS), a novel neural network architecture that significantly strengthens the inductive bias by embedding the algorithmic structure of a best-first online search algorithm. DTS employs a learnt world model to conduct a fully differentiable online search in latent state space. The world model is jointly optimised with the search algorithm, enabling the learning of a robust world model and mitigating the effect of model inaccuracies. We address potential Q-function discontinuities arising from naive incorporation of best-first search by adopting a stochastic tree expansion policy, formulating search tree expansion as a decision-making task, and introducing an effective variance reduction technique for the gradient computation. We evaluate DTS in an offline-RL setting with a limited training data scenario on Procgen games and grid navigation task, and demonstrate that DTS outperforms popular model-free and model-based baselines.
Abstract:A tree-based online search algorithm iteratively simulates trajectories and updates Q-value information on a set of states represented by a tree structure. Alternatively, policy gradient based online search algorithms update the information obtained from simulated trajectories directly onto the parameters of the policy and has been found to be effective. While tree-based methods limit the updates from simulations to the states that exist in the tree and do not interpolate the information to nearby states, policy gradient search methods do not do explicit exploration. In this paper, we show that it is possible to combine and leverage the strengths of these two methods for improved search performance. We examine the key reasons behind the improvement and propose a simple yet effective online search method, named Exploratory Policy Gradient Search (ExPoSe), that updates both the parameters of the policy as well as search information on the states in the trajectory. We conduct experiments on complex planning problems, which include Sokoban and Hamiltonian cycle search in sparse graphs and show that combining exploration with policy gradient improves online search performance.