Abstract:Robots have been brought to work close to humans in many scenarios. For coexistence and collaboration, robots should be safe and pleasant for humans to interact with. To this end, the robots could be both physically soft with multimodal sensing/perception, so that the robots could have better awareness of the surrounding environment, as well as to respond properly to humans' action/intention. This paper introduces a novel soft robotic link, named ProTac, that possesses multiple sensing modes: tactile and proximity sensing, based on computer vision and a functional material. These modalities come from a layered structure of a soft transparent silicon skin, a polymer dispersed liquid crystal (PDLC) film, and reflective markers. Here, the PDLC film can switch actively between the opaque and the transparent state, from which the tactile sensing and proximity sensing can be obtained by using cameras solely built inside the ProTac link. In this paper, inference algorithms for tactile proximity perception are introduced. Evaluation results of two sensing modalities demonstrated that, with a simple activation strategy, ProTac link could effectively perceive useful information from both approaching and in-contact obstacles. The proposed sensing device is expected to bring in ultimate solutions for design of robots with softness, whole-body and multimodal sensing, and safety control strategies.
Abstract:There is a growing need for vertical take-off and landing vehicles, including drones, which are safe to use and can adapt to collisions. The risks of damage by collision, to humans, obstacles in the environment, and drones themselves, are significant. This has prompted a search into nature for a highly resilient structure that can inform a design of propellers to reduce those risks and enhance safety. Inspired by the flexibility and resilience of dragonfly wings, we propose a novel design for a biomimetic drone propeller called Tombo propeller. Here, we report on the design and fabrication process of this biomimetic propeller that can accommodate collisions and recover quickly, while maintaining sufficient thrust force to hover and fly. We describe the development of an aerodynamic model and experiments conducted to investigate performance characteristics for various configurations of the propeller morphology, and related properties, such as generated thrust force, thrust force deviation, collision force, recovery time, lift-to-drag ratio, and noise. Finally, we design and showcase a control strategy for a drone equipped with Tombo propellers that collides in mid-air with an obstacle and recovers from collision continuing flying. The results show that the maximum collision force generated by the proposed Tombo propeller is less than two-thirds that of a traditional rigid propeller, which suggests the concrete possibility to employ deformable propellers for drones flying in a cluttered environment. This research can contribute to morphological design of flying vehicles for agile and resilient performance.