Abstract:We present a formal problem formulation for \textit{Reliable} Audio-Visual Question Answering ($\mathcal{R}$-AVQA), where we prefer abstention over answering incorrectly. While recent AVQA models have high accuracy, their ability to identify when they are likely wrong and their consequent abstention from answering remain underexplored areas of research. To fill this gap, we explore several approaches and then propose Adaptive Confidence Refinement (ACR), a lightweight method to further enhance the performance of $\mathcal{R}$-AVQA. Our key insight is that the Maximum Softmax Probability (MSP) is Bayes-optimal only under strong calibration, a condition usually not met in deep neural networks, particularly in multimodal models. Instead of replacing MSP, our ACR maintains it as a primary confidence signal and applies input-adaptive residual corrections when MSP is deemed unreliable. ACR introduces two learned heads: i) a Residual Risk Head that predicts low-magnitude correctness residuals that MSP does not capture, and ii) a Confidence Gating Head to determine MSP trustworthiness. Our experiments and theoretical analysis show that ACR consistently outperforms existing methods on in- and out-of-disrtibution, and data bias settings across three different AVQA architectures, establishing a solid foundation for $\mathcal{R}$-AVQA task. The code and checkpoints will be available upon acceptance \href{https://github.com/PhuTran1005/R-AVQA}{at here}
Abstract:Recently, window-based attention methods have shown great potential for computer vision tasks, particularly in Single Image Super-Resolution (SISR). However, it may fall short in capturing long-range dependencies and relationships between distant tokens. Additionally, we find that learning on spatial domain does not convey the frequency content of the image, which is a crucial aspect in SISR. To tackle these issues, we propose a new Channel-Partitioned Attention Transformer (CPAT) to better capture long-range dependencies by sequentially expanding windows along the height and width of feature maps. In addition, we propose a novel Spatial-Frequency Interaction Module (SFIM), which incorporates information from spatial and frequency domains to provide a more comprehensive information from feature maps. This includes information about the frequency content and enhances the receptive field across the entire image. Experimental findings demonstrate the effectiveness of our proposed modules and architecture. In particular, CPAT surpasses current state-of-the-art methods by up to 0.31dB.