Abstract:In this paper we present a dependency treebank of travel domain sentences in Modern Standard Arabic. The text comes from a translation of the English equivalent sentences in the Basic Traveling Expressions Corpus. The treebank dependency representation is in the style of the Columbia Arabic Treebank. The paper motivates the effort and discusses the construction process and guidelines. We also present parsing results and discuss the effect of domain and genre difference on parsing.
Abstract:We present the second ever evaluated Arabic dialect-to-dialect machine translation effort, and the first to leverage external resources beyond a small parallel corpus. The subject has not previously received serious attention due to lack of naturally occurring parallel data; yet its importance is evidenced by dialectal Arabic's wide usage and breadth of inter-dialect variation, comparable to that of Romance languages. Our results suggest that modeling morphology and syntax significantly improves dialect-to-dialect translation, though optimizing such data-sparse models requires consideration of the linguistic differences between dialects and the nature of available data and resources. On a single-reference blind test set where untranslated input scores 6.5 BLEU and a model trained only on parallel data reaches 14.6, pivot techniques and morphosyntactic modeling significantly improve performance to 17.5.