Abstract:Fine-grained vehicle recognition (FGVR) is an essential fundamental technology for intelligent transportation systems, but very difficult because of its inherent intra-class variation. Most previous FGVR studies only focus on the intra-class variation caused by different shooting angles, positions, etc., while the intra-class variation caused by image noise has received little attention. This paper proposes a progressive multi-task anti-noise learning (PMAL) framework and a progressive multi-task distilling (PMD) framework to solve the intra-class variation problem in FGVR due to image noise. The PMAL framework achieves high recognition accuracy by treating image denoising as an additional task in image recognition and progressively forcing a model to learn noise invariance. The PMD framework transfers the knowledge of the PMAL-trained model into the original backbone network, which produces a model with about the same recognition accuracy as the PMAL-trained model, but without any additional overheads over the original backbone network. Combining the two frameworks, we obtain models that significantly exceed previous state-of-the-art methods in recognition accuracy on two widely-used, standard FGVR datasets, namely Stanford Cars, and CompCars, as well as three additional surveillance image-based vehicle-type classification datasets, namely Beijing Institute of Technology (BIT)-Vehicle, Vehicle Type Image Data 2 (VTID2), and Vehicle Images Dataset for Make Model Recognition (VIDMMR), without any additional overheads over the original backbone networks. The source code is available at https://github.com/Dichao-Liu/Anti-noise_FGVR
Abstract:The number of traffic accidents has been continuously increasing in recent years worldwide. Many accidents are caused by distracted drivers, who take their attention away from driving. Motivated by the success of Convolutional Neural Networks (CNNs) in computer vision, many researchers developed CNN-based algorithms to recognize distracted driving from a dashcam and warn the driver against unsafe behaviors. However, current models have too many parameters, which is unfeasible for vehicle-mounted computing. This work proposes a novel knowledge-distillation-based framework to solve this problem. The proposed framework first constructs a high-performance teacher network by progressively strengthening the robustness to illumination changes from shallow to deep layers of a CNN. Then, the teacher network is used to guide the architecture searching process of a student network through knowledge distillation. After that, we use the teacher network again to transfer knowledge to the student network by knowledge distillation. Experimental results on the Statefarm Distracted Driver Detection Dataset and AUC Distracted Driver Dataset show that the proposed approach is highly effective for recognizing distracted driving behaviors from photos: (1) the teacher network's accuracy surpasses the previous best accuracy; (2) the student network achieves very high accuracy with only 0.42M parameters (around 55% of the previous most lightweight model). Furthermore, the student network architecture can be extended to a spatial-temporal 3D CNN for recognizing distracted driving from video clips. The 3D student network largely surpasses the previous best accuracy with only 2.03M parameters on the Drive&Act Dataset. The source code is available at https://github.com/Dichao-Liu/Lightweight_Distracted_Driver_Recognition_with_Distillation-Based_NAS_and_Knowledge_Transfer.