Abstract:We demonstrate that gauge equivariant diffusion models can accurately model the physics of non-Abelian lattice gauge theory using the Metropolis-adjusted annealed Langevin algorithm (MAALA), as exemplified by computations in two-dimensional U(2) and SU(2) gauge theories. Our network architecture is based on lattice gauge equivariant convolutional neural networks (L-CNNs), which respect local and global symmetries on the lattice. Models are trained on a single ensemble generated using a traditional Monte Carlo method. By studying Wilson loops of various size as well as the topological susceptibility, we find that the diffusion approach generalizes remarkably well to larger inverse couplings and lattice sizes with negligible loss of accuracy while retaining moderately high acceptance rates.




Abstract:The probability distribution effectively sampled by a complex Langevin process for theories with a sign problem is not known a priori and notoriously hard to understand. Diffusion models, a class of generative AI, can learn distributions from data. In this contribution, we explore the ability of diffusion models to learn the distributions created by a complex Langevin process.




Abstract:To analyse how diffusion models learn correlations beyond Gaussian ones, we study the behaviour of higher-order cumulants, or connected n-point functions, under both the forward and backward process. We derive explicit expressions for the moment- and cumulant-generating functionals, in terms of the distribution of the initial data and properties of forward process. It is shown analytically that during the forward process higher-order cumulants are conserved in models without a drift, such as the variance-expanding scheme, and that therefore the endpoint of the forward process maintains nontrivial correlations. We demonstrate that since these correlations are encoded in the score function, higher-order cumulants are learnt in the backward process, also when starting from a normal prior. We confirm our analytical results in an exactly solvable toy model with nonzero cumulants and in scalar lattice field theory.