Abstract:Federated bilevel optimization has received increasing attention in various emerging machine learning and communication applications. Recently, several Hessian-vector-based algorithms have been proposed to solve the federated bilevel optimization problem. However, several important properties in federated learning such as the partial client participation and the linear speedup for convergence (i.e., the convergence rate and complexity are improved linearly with respect to the number of sampled clients) in the presence of non-i.i.d.~datasets, still remain open. In this paper, we fill these gaps by proposing a new federated bilevel algorithm named FedMBO with a novel client sampling scheme in the federated hypergradient estimation. We show that FedMBO achieves a convergence rate of $\mathcal{O}\big(\frac{1}{\sqrt{nK}}+\frac{1}{K}+\frac{\sqrt{n}}{K^{3/2}}\big)$ on non-i.i.d.~datasets, where $n$ is the number of participating clients in each round, and $K$ is the total number of iteration. This is the first theoretical linear speedup result for non-i.i.d.~federated bilevel optimization. Extensive experiments validate our theoretical results and demonstrate the effectiveness of our proposed method.
Abstract:This work considers optimization of composition of functions in a nested form over Riemannian manifolds where each function contains an expectation. This type of problems is gaining popularity in applications such as policy evaluation in reinforcement learning or model customization in meta-learning. The standard Riemannian stochastic gradient methods for non-compositional optimization cannot be directly applied as stochastic approximation of inner functions create bias in the gradients of the outer functions. For two-level composition optimization, we present a Riemannian Stochastic Composition Gradient Descent (R-SCGD) method that finds an approximate stationary point, with expected squared Riemannian gradient smaller than $\epsilon$, in $O(\epsilon^{-2})$ calls to the stochastic gradient oracle of the outer function and stochastic function and gradient oracles of the inner function. Furthermore, we generalize the R-SCGD algorithms for problems with multi-level nested compositional structures, with the same complexity of $O(\epsilon^{-2})$ for the first-order stochastic oracle. Finally, the performance of the R-SCGD method is numerically evaluated over a policy evaluation problem in reinforcement learning.