Abstract:Recent advancements in deep learning for Medical Artificial Intelligence have demonstrated that models can match the diagnostic performance of clinical experts in adult chest X-ray (CXR) interpretation. However, their application in the pediatric context remains limited due to the scarcity of large annotated pediatric image datasets. Additionally, significant challenges arise from the substantial variability in pediatric CXR images across different hospitals and the diverse age range of patients from 0 to 18 years. To address these challenges, we propose SCC, a novel approach that combines transfer learning with self-supervised contrastive learning, augmented by an unsupervised contrast enhancement technique. Transfer learning from a well-trained adult CXR model mitigates issues related to the scarcity of pediatric training data. Contrastive learning with contrast enhancement focuses on the lungs, reducing the impact of image variations and producing high-quality embeddings across diverse pediatric CXR images. We train SCC on one pediatric CXR dataset and evaluate its performance on two other pediatric datasets from different sources. Our results show that SCC's out-of-distribution (zero-shot) performance exceeds regular transfer learning in terms of AUC by 13.6% and 34.6% on the two test datasets. Moreover, with few-shot learning using 10 times fewer labeled images, SCC matches the performance of regular transfer learning trained on the entire labeled dataset. To test the generality of the framework, we verify its performance on three benchmark breast cancer datasets. Starting from a model trained on natural images and fine-tuned on one breast dataset, SCC outperforms the fully supervised learning baseline on the other two datasets in terms of AUC by 3.6% and 5.5% in zero-shot learning.
Abstract:In this paper, the performance of three deep learning methods for predicting short-term evolution and reproducing the long-term statistics of a multi-scale spatio-temporal Lorenz 96 system is examined. The methods are: echo state network (a type of reservoir computing, RC-ESN), deep feed-forward artificial neural network (ANN), and recurrent neural network with long short-term memory (RNN-LSTM). This Lorenz system has three tiers of nonlinearly interacting variables representing slow/large-scale ($X$), intermediate ($Y$), and fast/small-scale ($Z$) processes. For training or testing, only $X$ is available; $Y$ and $Z$ are never known/used. It is shown that RC-ESN substantially outperforms ANN and RNN-LSTM for short-term prediction, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps, equivalent to several Lyapunov timescales. RNN-LSTM and ANN show some prediction skills as well; RNN-LSTM bests ANN. Furthermore, even after losing the trajectory, data predicted by RC-ESN and RNN-LSTM have probability density functions (PDFs) that closely match the true PDF, even at the tails. PDF of the ANN data deviates from the true PDF. Implications, caveats, and applications to data-driven and inexact, data-assisted surrogate modeling of complex dynamical systems such as weather/climate are discussed.