Abstract:Cardiovascular diseases, a leading cause of noncommunicable disease-related deaths, require early and accurate detection to improve patient outcomes. Taking advantage of advances in machine learning and deep learning, multiple approaches have been proposed in the literature to address the challenge of detecting ECG anomalies. Typically, these methods are based on the manual interpretation of ECG signals, which is time consuming and depends on the expertise of healthcare professionals. The objective of this work is to propose a deep learning system, FADE, designed for normal ECG forecasting and anomaly detection, which reduces the need for extensive labeled datasets and manual interpretation. FADE has been trained in a self-supervised manner with a novel morphological inspired loss function. Unlike conventional models that learn from labeled anomalous ECG waveforms, our approach predicts the future of normal ECG signals, thus avoiding the need for extensive labeled datasets. Using a novel distance function to compare forecasted ECG signals with actual sensor data, our method effectively identifies cardiac anomalies. Additionally, this approach can be adapted to new contexts through domain adaptation techniques. To evaluate our proposal, we performed a set of experiments using two publicly available datasets: MIT-BIH NSR and MIT-BIH Arrythmia. The results demonstrate that our system achieves an average accuracy of 83.84% in anomaly detection, while correctly classifying normal ECG signals with an accuracy of 85.46%. Our proposed approach exhibited superior performance in the early detection of cardiac anomalies in ECG signals, surpassing previous methods that predominantly identify a limited range of anomalies. FADE effectively detects both abnormal heartbeats and arrhythmias, offering significant advantages in healthcare through cost reduction or processing of large-scale ECG data.
Abstract:Breakthroughs in ultra-low-power chip technology are transforming biomedical wearables, making it possible to monitor patients in real time with devices operating on mere {\mu}W. Although many studies have examined the power performance of commercial microcontrollers, it remains unclear which ones perform best across diverse application profiles and which hardware features are most crucial for minimizing energy consumption under varying computational loads. Identifying these features for typical wearable applications and understanding their effects on performance and energy efficiency are essential for optimizing deployment strategies and informing future hardware designs. In this work, we conduct an in-depth study of state-of-the-art (SoA) micro-controller units(MCUs) in terms of processing capability and energy efficiency using representative end-to-end SoA wearable applications. We systematically benchmark each platform across three primary application phases: idle, data acquisition, and processing, allowing a holistic assessment of the platform processing capability and overall energy efficiency across varying patient-monitoring application profiles. Our detailed analysis of performance and energy discrepancies across different platforms reveals key strengths and limitations of the current low-power hardware design and pinpoints the strengths and weaknesses of SoA MCUs. We conclude with actionable insights for wearable application designers and hardware engineers, aiming to inform future hardware design improvements and support optimal platform selection for energy-constrained biomedical applications.
Abstract:The design of low-power wearables for the biomedical domain has received a lot of attention in recent decades, as technological advances in chip manufacturing have allowed real-time monitoring of patients using low-complexity ML within the mW range. Despite advances in application and hardware design research, the domain lacks a systematic approach to hardware evaluation. In this work, we propose BiomedBench, a new benchmark suite composed of complete end-to-end TinyML biomedical applications for real-time monitoring of patients using wearable devices. Each application presents different requirements during typical signal acquisition and processing phases, including varying computational workloads and relations between active and idle times. Furthermore, our evaluation of five state-of-the-art low-power platforms in terms of energy efficiency shows that modern platforms cannot effectively target all types of biomedical applications. BiomedBench will be released as an open-source suite to enable future improvements in the entire domain of bioengineering systems and TinyML application design.