Abstract:2D image coding for machines (ICM) has achieved great success in coding efficiency, while less effort has been devoted to stereo image fields. To promote the efficiency of stereo image compression (SIC) and intelligent analysis, the stereo image coding for machines (SICM) is formulated and explored in this paper. More specifically, a machine vision-oriented stereo feature compression network (MVSFC-Net) is proposed for SICM, where the stereo visual features are effectively extracted, compressed, and transmitted for 3D visual task. To efficiently compress stereo visual features in MVSFC-Net, a stereo multi-scale feature compression (SMFC) module is designed to gradually transform sparse stereo multi-scale features into compact joint visual representations by removing spatial, inter-view, and cross-scale redundancies simultaneously. Experimental results show that the proposed MVSFC-Net obtains superior compression efficiency as well as 3D visual task performance, when compared with the existing ICM anchors recommended by MPEG and the state-of-the-art SIC method.