Abstract:We introduce RoadSocial, a large-scale, diverse VideoQA dataset tailored for generic road event understanding from social media narratives. Unlike existing datasets limited by regional bias, viewpoint bias and expert-driven annotations, RoadSocial captures the global complexity of road events with varied geographies, camera viewpoints (CCTV, handheld, drones) and rich social discourse. Our scalable semi-automatic annotation framework leverages Text LLMs and Video LLMs to generate comprehensive question-answer pairs across 12 challenging QA tasks, pushing the boundaries of road event understanding. RoadSocial is derived from social media videos spanning 14M frames and 414K social comments, resulting in a dataset with 13.2K videos, 674 tags and 260K high-quality QA pairs. We evaluate 18 Video LLMs (open-source and proprietary, driving-specific and general-purpose) on our road event understanding benchmark. We also demonstrate RoadSocial's utility in improving road event understanding capabilities of general-purpose Video LLMs.
Abstract:This paper presents the myEye2Wheeler dataset, a unique resource of real-world gaze behaviour of two-wheeler drivers navigating complex Indian traffic. Most datasets are from four-wheeler drivers on well-planned roads and homogeneous traffic. Our dataset offers a critical lens into the unique visual attention patterns and insights into the decision-making of Indian two-wheeler drivers. The analysis demonstrates that existing saliency models, like TASED-Net, perform less effectively on the myEye-2Wheeler dataset compared to when applied on the European 4-wheeler eye tracking datasets (DR(Eye)VE), highlighting the need for models specifically tailored to the traffic conditions. By introducing the dataset, we not only fill a significant gap in two-wheeler driver behaviour research in India but also emphasise the critical need for developing context-specific saliency models. The larger aim is to improve road safety for two-wheeler users and lane-planning to support a cost-effective mode of transport.