Abstract:Adverse event (AE) extraction following COVID-19 vaccines from text data is crucial for monitoring and analyzing the safety profiles of immunizations. Traditional deep learning models are adept at learning intricate feature representations and dependencies in sequential data, but often require extensive labeled data. In contrast, large language models (LLMs) excel in understanding contextual information, but exhibit unstable performance on named entity recognition tasks, possibly due to their broad but unspecific training. This study aims to evaluate the effectiveness of LLMs and traditional deep learning models in AE extraction, and to assess the impact of ensembling these models on performance. In this study, we utilized reports and posts from the VAERS (n=621), Twitter (n=9,133), and Reddit (n=131) as our corpora. Our goal was to extract three types of entities: "vaccine", "shot", and "ae". We explored and fine-tuned (except GPT-4) multiple LLMs, including GPT-2, GPT-3.5, GPT-4, and Llama-2, as well as traditional deep learning models like RNN and BioBERT. To enhance performance, we created ensembles of the three models with the best performance. For evaluation, we used strict and relaxed F1 scores to evaluate the performance for each entity type, and micro-average F1 was used to assess the overall performance. The ensemble model achieved the highest performance in "vaccine", "shot", and "ae" with strict F1-scores of 0.878, 0.930, and 0.925, respectively, along with a micro-average score of 0.903. In conclusion, this study demonstrates the effectiveness and robustness of ensembling fine-tuned traditional deep learning models and LLMs, for extracting AE-related information. This study contributes to the advancement of biomedical natural language processing, providing valuable insights into improving AE extraction from text data for pharmacovigilance and public health surveillance.