The University of Tokyo, Japan
Abstract:This paper summarizes the Crowdsensing-based Road Damage Detection Challenge (CRDDC), a Big Data Cup organized as a part of the IEEE International Conference on Big Data'2022. The Big Data Cup challenges involve a released dataset and a well-defined problem with clear evaluation metrics. The challenges run on a data competition platform that maintains a real-time online evaluation system for the participants. In the presented case, the data constitute 47,420 road images collected from India, Japan, the Czech Republic, Norway, the United States, and China to propose methods for automatically detecting road damages in these countries. More than 60 teams from 19 countries registered for this competition. The submitted solutions were evaluated using five leaderboards based on performance for unseen test images from the aforementioned six countries. This paper encapsulates the top 11 solutions proposed by these teams. The best-performing model utilizes ensemble learning based on YOLO and Faster-RCNN series models to yield an F1 score of 76% for test data combined from all 6 countries. The paper concludes with a comparison of current and past challenges and provides direction for the future.
Abstract:Road rutting is a severe road distress that can cause premature failure of road incurring early and costly maintenance costs. Research on road damage detection using image processing techniques and deep learning are being actively conducted in the past few years. However, these researches are mostly focused on detection of cracks, potholes, and their variants. Very few research has been done on the detection of road rutting. This paper proposes a novel road rutting dataset comprising of 949 images and provides both object level and pixel level annotations. Object detection models and semantic segmentation models were deployed to detect road rutting on the proposed dataset, and quantitative and qualitative analysis of model predictions were done to evaluate model performance and identify challenges faced in the detection of road rutting using the proposed method. Object detection model YOLOX-s achieves mAP@IoU=0.5 of 61.6% and semantic segmentation model PSPNet (Resnet-50) achieves IoU of 54.69 and accuracy of 72.67, thus providing a benchmark accuracy for similar work in future. The proposed road rutting dataset and the results of our research study will help accelerate the research on detection of road rutting using deep learning.
Abstract:The data article describes the Road Damage Dataset, RDD2022, which comprises 47,420 road images from six countries, Japan, India, the Czech Republic, Norway, the United States, and China. The images have been annotated with more than 55,000 instances of road damage. Four types of road damage, namely longitudinal cracks, transverse cracks, alligator cracks, and potholes, are captured in the dataset. The annotated dataset is envisioned for developing deep learning-based methods to detect and classify road damage automatically. The dataset has been released as a part of the Crowd sensing-based Road Damage Detection Challenge (CRDDC2022). The challenge CRDDC2022 invites researchers from across the globe to propose solutions for automatic road damage detection in multiple countries. The municipalities and road agencies may utilize the RDD2022 dataset, and the models trained using RDD2022 for low-cost automatic monitoring of road conditions. Further, computer vision and machine learning researchers may use the dataset to benchmark the performance of different algorithms for other image-based applications of the same type (classification, object detection, etc.).
Abstract:This paper summarizes the Global Road Damage Detection Challenge (GRDDC), a Big Data Cup organized as a part of the IEEE International Conference on Big Data'2020. The Big Data Cup challenges involve a released dataset and a well-defined problem with clear evaluation metrics. The challenges run on a data competition platform that maintains a leaderboard for the participants. In the presented case, the data constitute 26336 road images collected from India, Japan, and the Czech Republic to propose methods for automatically detecting road damages in these countries. In total, 121 teams from several countries registered for this competition. The submitted solutions were evaluated using two datasets test1 and test2, comprising 2,631 and 2,664 images. This paper encapsulates the top 12 solutions proposed by these teams. The best performing model utilizes YOLO-based ensemble learning to yield an F1 score of 0.67 on test1 and 0.66 on test2. The paper concludes with a review of the facets that worked well for the presented challenge and those that could be improved in future challenges.
Abstract:Many municipalities and road authorities seek to implement automated evaluation of road damage. However, they often lack technology, know-how, and funds to afford state-of-the-art equipment for data collection and analysis of road damages. Although some countries, like Japan, have developed less expensive and readily available Smartphone-based methods for automatic road condition monitoring, other countries still struggle to find efficient solutions. This work makes the following contributions in this context. Firstly, it assesses the usability of the Japanese model for other countries. Secondly, it proposes a large-scale heterogeneous road damage dataset comprising 26620 images collected from multiple countries using smartphones. Thirdly, we propose generalized models capable of detecting and classifying road damages in more than one country. Lastly, we provide recommendations for readers, local agencies, and municipalities of other countries when one other country publishes its data and model for automatic road damage detection and classification. Our dataset is available at (https://github.com/sekilab/RoadDamageDetector/).