Abstract:The purpose of the MANILA24 Workshop on information retrieval for climate impact was to bring together researchers from academia, industry, governments, and NGOs to identify and discuss core research problems in information retrieval to assess climate change impacts. The workshop aimed to foster collaboration by bringing communities together that have so far not been very well connected -- information retrieval, natural language processing, systematic reviews, impact assessments, and climate science. The workshop brought together a diverse set of researchers and practitioners interested in contributing to the development of a technical research agenda for information retrieval to assess climate change impacts.
Abstract:Understanding future weather changes at regional and local scales is crucial for planning and decision-making, particularly in the context of extreme weather events, as well as for broader applications in agriculture, insurance, and infrastructure development. However, the computational cost of downscaling Global Climate Models (GCMs) to the fine resolutions needed for such applications presents a significant barrier. Drawing on advancements in weather forecasting models, this study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model. Initially trained on ERA5 data to downscale from 50 km to 25 km resolution, the model is then tested on the higher resolution BARRA-SY dataset at a 3 km resolution. Remarkably, it performs well without additional training, demonstrating its ability to generalize across different resolutions. This approach holds promise for generating large ensembles of regional climate simulations by downscaling GCMs with varying input resolutions without incurring additional training costs. Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables, aiding in effective planning for extreme weather events and climate change adaptation strategies.