Abstract:The vulnerability of Convolutional Neural Networks (CNNs) to adversarial samples has recently garnered significant attention in the machine learning community. Furthermore, recent studies have unveiled the existence of universal adversarial perturbations (UAPs) that are image-agnostic and highly transferable across different CNN models. In this survey, our primary focus revolves around the recent advancements in UAPs specifically within the image classification task. We categorize UAPs into two distinct categories, i.e., noise-based attacks and generator-based attacks, thereby providing a comprehensive overview of representative methods within each category. By presenting the computational details of these methods, we summarize various loss functions employed for learning UAPs. Furthermore, we conduct a comprehensive evaluation of different loss functions within consistent training frameworks, including noise-based and generator-based. The evaluation covers a wide range of attack settings, including black-box and white-box attacks, targeted and untargeted attacks, as well as the examination of defense mechanisms. Our quantitative evaluation results yield several important findings pertaining to the effectiveness of different loss functions, the selection of surrogate CNN models, the impact of training data and data size, and the training frameworks involved in crafting universal attackers. Finally, to further promote future research on universal adversarial attacks, we provide some visualizations of the perturbations and discuss the potential research directions.
Abstract:Recent research has shown that Deep Neural Networks (DNNs) are highly vulnerable to adversarial samples, which are highly transferable and can be used to attack other unknown black-box models. To improve the transferability of adversarial samples, several feature-based adversarial attack methods have been proposed to disrupt neuron activation in the middle layers. However, current state-of-the-art feature-based attack methods typically require additional computation costs for estimating the importance of neurons. To address this challenge, we propose a Singular Value Decomposition (SVD)-based feature-level attack method. Our approach is inspired by the discovery that eigenvectors associated with the larger singular values decomposed from the middle layer features exhibit superior generalization and attention properties. Specifically, we conduct the attack by retaining the decomposed Top-1 singular value-associated feature for computing the output logits, which are then combined with the original logits to optimize adversarial examples. Our extensive experimental results verify the effectiveness of our proposed method, which can be easily integrated into various baselines to significantly enhance the transferability of adversarial samples for disturbing normally trained CNNs and advanced defense strategies. The source code of this study is available at \textcolor{blue}{\href{https://anonymous.4open.science/r/SVD-SSA-13BF/README.md}{Link}}.