Abstract:The application of deep learning-based architecture has seen a tremendous rise in recent years. For example, medical image classification using deep learning achieved breakthrough results. Convolutional Neural Networks (CNNs) are implemented predominantly in medical image classification and segmentation. On the other hand, transfer learning has emerged as a prominent supporting tool for enhancing the efficiency and accuracy of deep learning models. This paper investigates the development of CNN architectures using transfer learning techniques in the field of medical image classification using a timeline mapping model for key image classification challenges. Our findings help make an informed decision while selecting the optimum and state-of-the-art CNN architectures.
Abstract:This paper describes Convex, a convex optimization modeling framework in Julia. Convex translates problems from a user-friendly functional language into an abstract syntax tree describing the problem. This concise representation of the global structure of the problem allows Convex to infer whether the problem complies with the rules of disciplined convex programming (DCP), and to pass the problem to a suitable solver. These operations are carried out in Julia using multiple dispatch, which dramatically reduces the time required to verify DCP compliance and to parse a problem into conic form. Convex then automatically chooses an appropriate backend solver to solve the conic form problem.