Abstract:Modern clustering approaches often trade interpretability for performance, particularly in deep learning-based methods. We present Generative Kernel Spectral Clustering (GenKSC), a novel model combining kernel spectral clustering with generative modeling to produce both well-defined clusters and interpretable representations. By augmenting weighted variance maximization with reconstruction and clustering losses, our model creates an explorable latent space where cluster characteristics can be visualized through traversals along cluster directions. Results on MNIST and FashionMNIST datasets demonstrate the model's ability to learn meaningful cluster representations.
Abstract:Kernel PCA is a powerful feature extractor which recently has seen a reformulation in the context of Restricted Kernel Machines (RKMs). These RKMs allow for a representation of kernel PCA in terms of hidden and visible units similar to Restricted Boltzmann Machines. This connection has led to insights on how to use kernel PCA in a generative procedure, called generative kernel PCA. In this paper, the use of generative kernel PCA for exploring latent spaces of datasets is investigated. New points can be generated by gradually moving in the latent space, which allows for an interpretation of the components. Firstly, examples of this feature space exploration on three datasets are shown with one of them leading to an interpretable representation of ECG signals. Afterwards, the use of the tool in combination with novelty detection is shown, where the latent space around novel patterns in the data is explored. This helps in the interpretation of why certain points are considered as novel.