Abstract:To automate harvesting and de-leafing of tomato plants using robots, it is important to search and detect the relevant plant parts, namely tomatoes, peduncles, and petioles. This is challenging due to high levels of occlusion in tomato greenhouses. Active vision is a promising approach which helps robots to deliberately plan camera viewpoints to overcome occlusion and improve perception accuracy. However, current active-vision algorithms cannot differentiate between relevant and irrelevant plant parts, making them inefficient for targeted perception of specific plant parts. We propose a semantic active-vision strategy that uses semantic information to identify the relevant plant parts and prioritises them during view planning using an attention mechanism. We evaluated our strategy using 3D models of tomato plants with varying structural complexity, which closely represented occlusions in the real world. We used a simulated environment to gain insights into our strategy, while ensuring repeatability and statistical significance. At the end of ten viewpoints, our strategy was able to correctly detect 85.5% of the plant parts, about 4 parts more on average per plant compared to a volumetric active-vision strategy. Also, it detected 5 and 9 parts more compared to two predefined strategies and 11 parts more compared to a random strategy. It also performed reliably with a median of 88.9% correctly-detected objects per plant in 96 experiments. Our strategy was also robust to uncertainty in plant and plant-part position, plant complexity, and different viewpoint sampling strategies. We believe that our work could significantly improve the speed and robustness of automated harvesting and de-leafing in tomato crop production.
Abstract:Accurate representation and localization of relevant objects is important for robots to perform tasks. Building a generic representation that can be used across different environments and tasks is not easy, as the relevant objects vary depending on the environment and the task. Furthermore, another challenge arises in agro-food environments due to their complexity, and high levels of clutter and occlusions. In this paper, we present a method to build generic representations in highly occluded agro-food environments using multi-view perception and 3D multi-object tracking. Our representation is built upon a detection algorithm that generates a partial point cloud for each detected object. The detected objects are then passed to a 3D multi-object tracking algorithm that creates and updates the representation over time. The whole process is performed at a rate of 10 Hz. We evaluated the accuracy of the representation on a real-world agro-food environment, where it was able to successfully represent and locate tomatoes in tomato plants despite a high level of occlusion. We were able to estimate the total count of tomatoes with a maximum error of 5.08% and to track tomatoes with a tracking accuracy up to 71.47%. Additionally, we showed that an evaluation using tracking metrics gives more insight in the errors in localizing and representing the fruits.