Abstract:Flatbed scanners have emerged as promising devices for high-resolution, single-image material capture. However, existing approaches assume very specific conditions, such as uniform diffuse illumination, which are only available in certain high-end devices, hindering their scalability and cost. In contrast, in this work, we introduce a method inspired by intrinsic image decomposition, which accurately removes both shading and specularity, effectively allowing captures with any flatbed scanner. Further, we extend previous work on single-image material reflectance capture with the estimation of opacity and transmittance, critical components of full material appearance (SVBSDF), improving the results for any material captured with a flatbed scanner, at a very high resolution and accuracy
Abstract:We propose a learning-based method to recover normals, specularity, and roughness from a single diffuse image of a material, using microgeometry appearance as our primary cue. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. In contrast, in this work, we propose a novel capture approach that leverages a generative network with attention and a U-Net discriminator, which shows outstanding performance integrating global information at reduced computational complexity. We showcase the performance of our method with a real dataset of digitized textile materials and show that a commodity flatbed scanner can produce the type of diffuse illumination required as input to our method. Additionally, because the problem might be illposed -more than a single diffuse image might be needed to disambiguate the specular reflection- or because the training dataset is not representative enough of the real distribution, we propose a novel framework to quantify the model's confidence about its prediction at test time. Our method is the first one to deal with the problem of modeling uncertainty in material digitization, increasing the trustworthiness of the process and enabling more intelligent strategies for dataset creation, as we demonstrate with an active learning experiment.