Abstract:This study demonstrates a novel approach to facial camouflage that combines targeted cosmetic perturbations and alpha transparency layer manipulation to evade modern facial recognition systems. Unlike previous methods -- such as CV dazzle, adversarial patches, and theatrical disguises -- this work achieves effective obfuscation through subtle modifications to key-point regions, particularly the brow, nose bridge, and jawline. Empirical testing with Haar cascade classifiers and commercial systems like BetaFaceAPI and Microsoft Bing Visual Search reveals that vertical perturbations near dense facial key points significantly disrupt detection without relying on overt disguises. Additionally, leveraging alpha transparency attacks in PNG images creates a dual-layer effect: faces remain visible to human observers but disappear in machine-readable RGB layers, rendering them unidentifiable during reverse image searches. The results highlight the potential for creating scalable, low-visibility facial obfuscation strategies that balance effectiveness and subtlety, opening pathways for defeating surveillance while maintaining plausible anonymity.
Abstract:This research introduces a novel evaluation framework designed to assess large language models' (LLMs) ability to acknowledge uncertainty on 675 fundamentally unsolvable problems. Using a curated dataset of graduate-level grand challenge questions with intentionally unknowable answers, we evaluated twelve state-of-the-art LLMs, including both open and closed-source models, on their propensity to admit ignorance rather than generate plausible but incorrect responses. The best models scored in 62-68% accuracy ranges for admitting the problem solution was unknown in fields ranging from biology to philosophy and mathematics. We observed an inverse relationship between problem difficulty and model accuracy, with GPT-4 demonstrating higher rates of uncertainty acknowledgment on more challenging problems (35.8%) compared to simpler ones (20.0%). This pattern indicates that models may be more prone to generate speculative answers when problems appear more tractable. The study also revealed significant variations across problem categories, with models showing difficulty in acknowledging uncertainty in invention and NP-hard problems while performing relatively better on philosophical and psychological challenges. These results contribute to the growing body of research on artificial general intelligence (AGI) assessment by highlighting the importance of uncertainty recognition as a critical component of future machine intelligence evaluation. This impossibility test thus extends previous theoretical frameworks for universal intelligence testing by providing empirical evidence of current limitations in LLMs' ability to recognize their own knowledge boundaries, suggesting new directions for improving model training architectures and evaluation approaches.
Abstract:This research tests the role of Large Language Models (LLMs) as formal second opinion tools in professional decision-making, particularly focusing on complex medical cases where even experienced physicians seek peer consultation. The work analyzed 183 challenging medical cases from Medscape over a 20-month period, testing multiple LLMs' performance against crowd-sourced physician responses. A key finding was the high overall score possible in the latest foundational models (>80% accuracy compared to consensus opinion), which exceeds most human metrics reported on the same clinical cases (450 pages of patient profiles, test results). The study rates the LLMs' performance disparity between straightforward cases (>81% accuracy) and complex scenarios (43% accuracy), particularly in these cases generating substantial debate among human physicians. The research demonstrates that LLMs may be valuable as generators of comprehensive differential diagnoses rather than as primary diagnostic tools, potentially helping to counter cognitive biases in clinical decision-making, reduce cognitive loads, and thus remove some sources of medical error. The inclusion of a second comparative legal dataset (Supreme Court cases, N=21) provides added empirical context to the AI use to foster second opinions, though these legal challenges proved considerably easier for LLMs to analyze. In addition to the original contributions of empirical evidence for LLM accuracy, the research aggregated a novel benchmark for others to score highly contested question and answer reliability between both LLMs and disagreeing human practitioners. These results suggest that the optimal deployment of LLMs in professional settings may differ substantially from current approaches that emphasize automation of routine tasks.
Abstract:The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.
Abstract:This investigation reveals a novel exploit derived from PNG image file formats, specifically their alpha transparency layer, and its potential to fool multiple AI vision systems. Our method uses this alpha layer as a clandestine channel invisible to human observers but fully actionable by AI image processors. The scope tested for the vulnerability spans representative vision systems from Apple, Microsoft, Google, Salesforce, Nvidia, and Facebook, highlighting the attack's potential breadth. This vulnerability challenges the security protocols of existing and fielded vision systems, from medical imaging to autonomous driving technologies. Our experiments demonstrate that the affected systems, which rely on convolutional neural networks or the latest multimodal language models, cannot quickly mitigate these vulnerabilities through simple patches or updates. Instead, they require retraining and architectural changes, indicating a persistent hole in multimodal technologies without some future adversarial hardening against such vision-language exploits.
Abstract:This paper investigates a novel algorithmic vulnerability when imperceptible image layers confound multiple vision models into arbitrary label assignments and captions. We explore image preprocessing methods to introduce stealth transparency, which triggers AI misinterpretation of what the human eye perceives. The research compiles a broad attack surface to investigate the consequences ranging from traditional watermarking, steganography, and background-foreground miscues. We demonstrate dataset poisoning using the attack to mislabel a collection of grayscale landscapes and logos using either a single attack layer or randomly selected poisoning classes. For example, a military tank to the human eye is a mislabeled bridge to object classifiers based on convolutional networks (YOLO, etc.) and vision transformers (ViT, GPT-Vision, etc.). A notable attack limitation stems from its dependency on the background (hidden) layer in grayscale as a rough match to the transparent foreground image that the human eye perceives. This dependency limits the practical success rate without manual tuning and exposes the hidden layers when placed on the opposite display theme (e.g., light background, light transparent foreground visible, works best against a light theme image viewer or browser). The stealth transparency confounds established vision systems, including evading facial recognition and surveillance, digital watermarking, content filtering, dataset curating, automotive and drone autonomy, forensic evidence tampering, and retail product misclassifying. This method stands in contrast to traditional adversarial attacks that typically focus on modifying pixel values in ways that are either slightly perceptible or entirely imperceptible for both humans and machines.
Abstract:With the growing capabilities of modern object detection networks and datasets to train them, it has gotten more straightforward and, importantly, less laborious to get up and running with a model that is quite adept at detecting any number of various objects. However, while image datasets for object detection have grown and continue to proliferate (the current most extensive public set, ImageNet, contains over 14m images with over 14m instances), the same cannot be said for textual caption datasets. While they have certainly been growing in recent years, caption datasets present a much more difficult challenge due to language differences, grammar, and the time it takes for humans to generate them. Current datasets have certainly provided many instances to work with, but it becomes problematic when a captioner may have a more limited vocabulary, one may not be adequately fluent in the language, or there are simple grammatical mistakes. These difficulties are increased when the images get more specific, such as remote sensing images. This paper aims to address this issue of potential information and communication shortcomings in caption datasets. To provide a more precise analysis, we specify our domain of images to be remote sensing images in the RSICD dataset and experiment with the captions provided here. Our findings indicate that ChatGPT grammar correction is a simple and effective way to increase the performance accuracy of caption models by making data captions more diverse and grammatically correct.
Abstract:Using a novel professional certification survey, the study focuses on assessing the vocational skills of two highly cited AI models, GPT-3 and Turbo-GPT3.5. The approach emphasizes the importance of practical readiness over academic performance by examining the models' performances on a benchmark dataset consisting of 1149 professional certifications. This study also includes a comparison with human test scores, providing perspective on the potential of AI models to match or even surpass human performance in professional certifications. GPT-3, even without any fine-tuning or exam preparation, managed to achieve a passing score (over 70% correct) on 39% of the professional certifications. It showcased proficiency in computer-related fields, including cloud and virtualization, business analytics, cybersecurity, network setup and repair, and data analytics. Turbo-GPT3.5, on the other hand, scored a perfect 100% on the highly regarded Offensive Security Certified Professional (OSCP) exam. This model also demonstrated competency in diverse professional fields, such as nursing, licensed counseling, pharmacy, and aviation. Turbo-GPT3.5 exhibited strong performance on customer service tasks, indicating potential use cases in enhancing chatbots for call centers and routine advice services. Both models also scored well on sensory and experience-based tests outside a machine's traditional roles, including wine sommelier, beer tasting, emotional quotient, and body language reading. The study found that OpenAI's model improvement from Babbage to Turbo led to a 60% better performance on the grading scale within a few years. This progress indicates that addressing the current model's limitations could yield an AI capable of passing even the most rigorous professional certifications.
Abstract:In this study, we investigate the emerging threat of inaudible acoustic attacks targeting digital voice assistants, a critical concern given their projected prevalence to exceed the global population by 2024. Our research extends the feasibility of these attacks across various platforms like Amazon's Alexa, Android, iOS, and Cortana, revealing significant vulnerabilities in smart devices. The twelve attack vectors identified include successful manipulation of smart home devices and automotive systems, potential breaches in military communication, and challenges in critical infrastructure security. We quantitatively show that attack success rates hover around 60%, with the ability to activate devices remotely from over 100 feet away. Additionally, these attacks threaten critical infrastructure, emphasizing the need for multifaceted defensive strategies combining acoustic shielding, advanced signal processing, machine learning, and robust user authentication to mitigate these risks.
Abstract:In this study, we evaluated the capability of Large Language Models (LLMs), particularly OpenAI's GPT-4, in detecting software vulnerabilities, comparing their performance against traditional static code analyzers like Snyk and Fortify. Our analysis covered numerous repositories, including those from NASA and the Department of Defense. GPT-4 identified approximately four times the vulnerabilities than its counterparts. Furthermore, it provided viable fixes for each vulnerability, demonstrating a low rate of false positives. Our tests encompassed 129 code samples across eight programming languages, revealing the highest vulnerabilities in PHP and JavaScript. GPT-4's code corrections led to a 90% reduction in vulnerabilities, requiring only an 11% increase in code lines. A critical insight was LLMs' ability to self-audit, suggesting fixes for their identified vulnerabilities and underscoring their precision. Future research should explore system-level vulnerabilities and integrate multiple static code analyzers for a holistic perspective on LLMs' potential.