Abstract:Learning management systems (LMSs) have become essential in higher education and play an important role in helping educational institutions to promote student success. Traditionally, LMSs have been used by postsecondary institutions in administration, reporting, and delivery of educational content. In this paper, we present an additional use of LMS by using its data logs to perform data-analytics and identify academically at-risk students. The data-driven insights would allow educational institutions and educators to develop and implement pedagogical interventions targeting academically at-risk students. We used anonymized data logs created by Brightspace LMS during fall 2019, spring 2020, and fall 2020 semesters at our college. Supervised machine learning algorithms were used to predict the final course performance of students, and several algorithms were found to perform well with accuracy above 90%. SHAP value method was used to assess the relative importance of features used in the predictive models. Unsupervised learning was also used to group students into different clusters based on the similarities in their interaction/involvement with LMS. In both of supervised and unsupervised learning, we identified two most-important features (Number_Of_Assignment_Submissions and Content_Completed). More importantly, our study lays a foundation and provides a framework for developing a real-time data analytics metric that may be incorporated into a LMS.