Abstract:Significant advancements in the field of wood species identification are needed worldwide to support sustainable timber trade. In this work we contribute to automate the identification of wood species via high-resolution macroscopic images of timber. The main challenge of this problem is that fine-grained patterns in timber are crucial in order to accurately identify wood species, and these patterns are not properly learned by traditional convolutional neural networks (CNNs) trained on low/medium resolution images. We propose a Timber Deep Learning Identification with Patch-based Inference Voting methodology, abbreviated TDLI-PIV methodology. Our proposal exploits the concept of patching and the availability of high-resolution macroscopic images of timber in order to overcome the inherent challenges that CNNs face in timber identification. The TDLI-PIV methodology is able to capture fine-grained patterns in timber and, moreover, boosts robustness and prediction accuracy via a collaborative voting inference process. In this work we also introduce a new data set of marcroscopic images of timber, called GOIMAI-Phase-I, which has been obtained using optical magnification in order to capture fine-grained details, which contrasts to the other datasets that are publicly available. More concretely, images in GOIMAI-Phase-I are taken with a smartphone with a 24x magnifying lens attached to the camera. Our data set contains 2120 images of timber and covers 37 legally protected wood species. Our experiments have assessed the performance of the TDLI-PIV methodology, involving the comparison with other methodologies available in the literature, exploration of data augmentation methods and the effect that the dataset size has on the accuracy of TDLI-PIV.
Abstract:Social Media and Internet have the potential to be exploited as a source of opinion to enrich Decision Making solutions. Crowd Decision Making (CDM) is a methodology able to infer opinions and decisions from plain texts, such as reviews published in social media platforms, by means of Sentiment Analysis. Currently, the emergence and potential of Large Language Models (LLMs) lead us to explore new scenarios of automatically understand written texts, also known as natural language processing. This paper analyzes the use of ChatGPT based on prompt design strategies to assist in CDM processes to extract opinions and make decisions. We integrate ChatGPT in CDM processes as a flexible tool that infer the opinions expressed in texts, providing numerical or linguistic evaluations where the decision making models are based on the prompt design strategies. We include a multi-criteria decision making scenario with a category ontology for criteria. We also consider ChatGPT as an end-to-end CDM model able to provide a general opinion and score on the alternatives. We conduct empirical experiments on real data extracted from TripAdvisor, the TripR-2020Large dataset. The analysis of results show a promising branch for developing quality decision making models using ChatGPT. Finally, we discuss the challenges of consistency, sensitivity and explainability associated to the use of LLMs in CDM processes, raising open questions for future studies.