Abstract:Business Process Simulation (BPS) is an approach to analyze the performance of business processes under different scenarios. For example, BPS allows us to estimate what would be the cycle time of a process if one or more resources became unavailable. The starting point of BPS is a process model annotated with simulation parameters (a BPS model). BPS models may be manually designed, based on information collected from stakeholders and empirical observations, or automatically discovered from execution data. Regardless of its origin, a key question when using a BPS model is how to assess its quality. In this paper, we propose a collection of measures to evaluate the quality of a BPS model w.r.t. its ability to replicate the observed behavior of the process. We advocate an approach whereby different measures tackle different process perspectives. We evaluate the ability of the proposed measures to discern the impact of modifications to a BPS model, and their ability to uncover the relative strengths and weaknesses of two approaches for automated discovery of BPS models. The evaluation shows that the measures not only capture how close a BPS model is to the observed behavior, but they also help us to identify sources of discrepancies.
Abstract:Business Process Simulation (BPS) is a common approach to estimate the impact of changes to a business process on its performance measures. For example, BPS allows us to estimate what would be the cycle time of a process if we automated one of its activities. The starting point of BPS is a business process model annotated with simulation parameters (a BPS model). Several studies have proposed methods to automatically discover BPS models from event logs via process mining. However, current techniques in this space discover BPS models that only capture waiting times caused by resource contention or resource unavailability. Oftentimes, a considerable portion of the waiting time in a business process is caused by extraneous delays, e.g. a resource waits for the customer to return a phone call. This paper proposes a method that discovers extraneous delays from input data, and injects timer events into a BPS model to capture the discovered delays. An empirical evaluation involving synthetic and real-life logs shows that the approach produces BPS models that better reflect the temporal dynamics of the process, relative to BPS models that do not capture extraneous delays.
Abstract:Process mining has emerged as a way to analyze the behavior of an organization by extracting knowledge from event logs and by offering techniques to discover, monitor and enhance real processes. In the discovery of process models, retrieving a complex one, i.e., a hardly readable process model, can hinder the extraction of information. Even in well-structured process models, there is information that cannot be obtained with the current techniques. In this paper, we present WoMine, an algorithm to retrieve frequent behavioural patterns from the model. Our approach searches in process models extracting structures with sequences, selections, parallels and loops, which are frequently executed in the logs. This proposal has been validated with a set of process models, including some from BPI Challenges, and compared with the state of the art techniques. Experiments have validated that WoMine can find all types of patterns, extracting information that cannot be mined with the state of the art techniques.