DISIT, Università del Piemonte Orientale, Italy
Abstract:In this paper we investigate the relationships between a multipreferential semantics for defeasible reasoning in knowledge representation and a multilayer neural network model. Weighted knowledge bases for a simple description logic with typicality are considered under a (many-valued) ``concept-wise" multipreference semantics. The semantics is used to provide a preferential interpretation of MultiLayer Perceptrons (MLPs). A model checking and an entailment based approach are exploited in the verification of conditional properties of MLPs.
Abstract:Weighted knowledge bases for description logics with typicality under a "concept-wise'' multi-preferential semantics provide a logical interpretation of MultiLayer Perceptrons. In this context, Answer Set Programming (ASP) has been shown to be suitable for addressing defeasible reasoning in the finitely many-valued case, providing a $\Pi^p_2$ upper bound on the complexity of the problem, nonetheless leaving unknown the exact complexity and only providing a proof-of-concept implementation. This paper fulfils the lack by providing a $P^{NP[log]}$-completeness result and new ASP encodings that deal with weighted knowledge bases with large search spaces.
Abstract:In this paper we propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics. The approach allows for conditional reasoning over arguments and boolean combination of arguments, with respect to a class of gradual semantics, through the verification of graded (strict or defeasible) implications over a preferential interpretation. As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning in a many-valued argumentation semantics of weighted argumentation graphs. The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.
Abstract:Weighted knowledge bases for description logics with typicality have been recently considered under a "concept-wise" multipreference semantics (in both the two-valued and fuzzy case), as the basis of a logical semantics of MultiLayer Perceptrons (MLPs). In this paper we consider weighted conditional ALC knowledge bases with typicality in the finitely many-valued case, through three different semantic constructions, based on coherent, faithful and phi-coherent interpretations. For the boolean fragment LC of ALC we exploit ASP and "asprin" for reasoning with the concept-wise multipreference entailment under a phi-coherent semantics, suitable to characterize the stationary states of MLPs. As a proof of concept, we experiment the proposed approach for checking properties of trained MLPs.
Abstract:Weighted knowledge bases for description logics with typicality have been recently considered under a "concept-wise" multipreference semantics (in both the two-valued and fuzzy case), as the basis of a logical semantics of Multilayer Perceptrons. In this paper we consider weighted conditional EL^bot knowledge bases in the two-valued case, and exploit ASP and asprin for encoding concept-wise multipreference entailment for weighted KBs with integer weights.
Abstract:We propose an approach based on Answer Set Programming for reasoning about actions with domain descriptions including ontological knowledge, expressed in the lightweight description logic EL^\bot. We consider a temporal action theory, which allows for non-deterministic actions and causal rules to deal with ramifications, and whose extensions are defined by temporal answer sets. We provide conditions under which action consistency can be guaranteed with respect to an ontology, by a polynomial encoding of an action theory extended with an EL^\bot knowledge base (in normal form) into a temporal action theory.
Abstract:In this paper we discuss the relationships between conditional and preferential logics and neural network models, based on a multi-preferential semantics. We propose a concept-wise multipreference semantics, recently introduced for defeasible description logics to take into account preferences with respect to different concepts, as a tool for providing a semantic interpretation to neural network models. This approach has been explored both for unsupervised neural network models (Self-Organising Maps) and for supervised ones (Multilayer Perceptrons), and we expect that the same approach might be extended to other neural network models. It allows for logical properties of the network to be checked (by model checking) over an interpretation capturing the input-output behavior of the network. For Multilayer Perceptrons, the deep network itself can be regarded as a conditional knowledge base, in which synaptic connections correspond to weighted conditionals. The paper describes the general approach, through the cases of Self-Organising Maps and Multilayer Perceptrons, and discusses some open issues and perspectives.
Abstract:In this paper we establish a link between preferential semantics for description logics and self-organising maps, which have been proposed as possible candidates to explain the psychological mechanisms underlying category generalisation. In particular, we show that a concept-wise multipreference semantics, which takes into account preferences with respect to different concepts and has been recently proposed for defeasible description logics, can be used to to provide a logical interpretation of SOMs. We also provide a logical interpretation of SOMs in terms of a fuzzy description logic as well as a probabilistic account.
Abstract:In this paper we investigate the relationships between a multipreferential semantics for defeasible reasoning in knowledge representation and a deep neural network model. Weighted knowledge bases for description logics are considered under a "concept-wise" multipreference semantics. The semantics is further extended to fuzzy interpretations and exploited to provide a preferential interpretation of Multilayer Perceptrons.
Abstract:We define a modular multi-concept extension of the lexicographic closure semantics for defeasible description logics with typicality. The idea is that of distributing the defeasible properties of concepts into different modules, according to their subject, and of defining a notion of preference for each module based on the lexicographic closure semantics. The preferential semantics of the knowledge base can then be defined as a combination of the preferences of the single modules. The range of possibilities, from fine grained to coarse grained modules, provides a spectrum of alternative semantics.